The ATRIAS agile humanoid robot, along with a number of other spring-mass walking machines, currently have two instabilities: one resulting from inertial forces on the torso which cause the robot to spin like a top, and another resulting from stiff ground collisions which cause chattering of the point-contact toes. This thesis presents a solution to these two problems in a manner consistent with the exacting design philosophy of spring-mass walking machines. A passive, compliant, line-contact foot is proposed with only 120 grams of added mass and a fully-adjustable return mechanism.
Preserving the Planar Dynamics of a Compliant Bipedal Robot with a Yaw-Stabilizing Foot Design

by

Andrew M. Abate

A PROJECT
submitted to
Oregon State University
University Honors College

in partial fulfillment of
the requirements for the
degree of

Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate)

Presented May 28, 2014
Commencement June 2014
Honors Baccalaureate of Science in Mechanical Engineering project of Andrew M. Abate presented on May 28, 2014.

APPROVED:

__
Jonathan Hurst, Mentor, representing Mechanical Engineering

__
Ross Hatton, Committee Member, representing Mechanical Engineering

__
Nancy Squires, Committee Member, representing Mechanical Engineering

__
Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon State University, University Honors College. My signature below authorizes release of my project to any reader upon request.

__
Andrew M. Abate, Author
ACKNOWLEDGMENTS

Having spent an absurd amount of time in the Dynamic Robotics Lab, I have a long list of people who have been gracious enough to aid me in my endeavors. First of all, to Jonathan Hurst who gave me the responsibility of designing ATRIAS. To the former senior members of the DRL who showed me many subtleties of the SLIP model and robotics in general, including Alexander Spröwitz and Daniel Renjewski. To the current senior members with whom I share a research space, Christian Hubicki, Hamid Vejdani, Siavash Rezazadeh, Andrew Peekema, and Mikhail Jones. To countless undergraduates and fellow “minions” of the DRL.
CONTENTS

1 INTRODUCTION 1

2 BACKGROUND 3
 2.1 Classical Walking Robots 3
 2.2 Animal Locomotion 4
 2.2.1 Mobility 4
 2.2.2 Efficiency 4
 2.2.3 Robustness 4
 2.2.4 Application to Walking Robots 5
 2.3 Model for Ambulation 5
 2.4 Force Control 5
 2.5 New Paradigm For Walking Robots 6
 2.6 Effects of a Point-Contact Toe 6
 2.7 Effect of Leg Mass 7
 2.8 The Need for Feet 7

3 PROJECT REQUIREMENTS 8

4 DESIGN SPACE 9
 4.1 Foot Geometry 9
 4.2 Contact Sensing 9
 4.2.1 Artificial Foot Pad 9
 4.2.2 Ground Profile Sensing 10
 4.2.3 Absolute Remote Positioning 10
 4.2.4 Estimated Local Positioning 10
 4.2.5 Direct Contact Sensing 10
 4.2.6 Strain-Based Contact Sensing 11
 4.3 Ground Clearance 11
 4.3.1 Return Spring 11
 4.3.2 Single-Body Design 11

5 POSSIBLE SOLUTIONS AND SELECTED DESIGN 12
 5.1 Possible Designs 12
 5.1.1 Skate Design 12
 5.1.2 Hoop Design 12
 5.2 Selected Design 12
 5.2.1 Ankle Body 13
 5.2.2 Arch 13
 5.2.3 Ankle Joint 14
 5.2.4 Pads 14
 5.2.5 Spring Return 15
 5.2.6 Contact Sensing 15

6 MANUFACTURE OF THE SELECTED DESIGN 19
 6.1 CNC Machining 19
CONTENTS

6.2 Sorbothane-Fiberglass-Urethane Foot Pads .. 19
6.3 Strain Gauges ... 20
6.4 Assembly and Final Touches .. 21

FIRST RESULTS

7.1 Ground Contact Stiffness ... 24
7.2 Ankle Stiffness ... 25
7.3 Yaw Stiction Torque .. 26
7.4 Swing Phase Contact Test ... 26
7.5 Testing Summary .. 27

DESIGN REVISIONS

8.1 Ankle Body .. 30
8.2 Return Mechanism .. 30
8.3 Compliant Arch ... 31
8.4 Off-The-Shelf Pads .. 32

CONCLUSIONS

9 Conclusions ... 34

BIBLIOGRAPHY

35
LIST OF FIGURES

Figure 1 ATRIAS humanoid. 2
Figure 2 SLIP model. 6
Figure 3 ATRIAS biped on planarizing boom. 7
Figure 4 Direct contact sensing example. 10
Figure 5 Concept sketches. 13
Figure 6 Arch FEA stress distribution. 14
Figure 7 Foot pad cross-section. 15
Figure 8 Arch load diagram. 15
Figure 9 Cantilever cross-section. 16
Figure 10 Wheatstone bridge diagram. 16
Figure 11 Foot prototype exploded view. 17
Figure 12 Stages of CNC machining the arch and ankle plates. 20
Figure 13 Assembled foot pads. 20
Figure 14 Strain gauge application. 21
Figure 15 Stages of foot assembly. 22
Figure 16 Foot mounted to ATRIAS. 23
Figure 17 Ground contact stiffness test setup. 25
Figure 18 Ground contact stiffness test results. 25
Figure 19 Materials used in ankle stiffness test. 26
Figure 20 Torque-displacement profile for return spring mechanism. 26
Figure 21 Test setup and results for the yaw stiction torque test. 27
Figure 22 Oscillation test setup. 28
Figure 23 Oscillation test results. 28
Figure 24 Swing oscillation simulation. 29
Figure 25 Foot revision. 31
Figure 26 Magnet return schematic. 31
Figure 27 Foot revision exploded view. 32

LIST OF TABLES

Table 1 Project requirements. 8
Table 2 Bill of materials. 18
Table 3 List of relevant foot properties. 24
ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>Computer-Aided Drafting</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>COM</td>
<td>Center of Mass</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>DRL</td>
<td>Dynamic Robotics Lab</td>
</tr>
<tr>
<td>FCA</td>
<td>Force Control Actuator</td>
</tr>
<tr>
<td>FEA</td>
<td>Finite-Element Analysis</td>
</tr>
<tr>
<td>FOS</td>
<td>Factor of Safety</td>
</tr>
<tr>
<td>M3</td>
<td>Maximum Mobility and Manipulation</td>
</tr>
<tr>
<td>MIME</td>
<td>Mechanical, Industrial, and Manufacturing Engineering</td>
</tr>
<tr>
<td>MPRL</td>
<td>Machining and Product Realization Lab</td>
</tr>
<tr>
<td>SEA</td>
<td>Series Elastic Actuator</td>
</tr>
<tr>
<td>SLIP</td>
<td>Spring Loaded Inverted Pendulum</td>
</tr>
<tr>
<td>SLS</td>
<td>Selective Laser Sintering</td>
</tr>
<tr>
<td>ZMP</td>
<td>Zero-Moment Point</td>
</tr>
</tbody>
</table>
INTRODUCTION

The field of walking robotics has progressed at an astounding rate over the past two decades; there is a large amount of forward pressure to design humanoid robots which are capable of operating in our very human environment, from simply moving over uneven ground and fitting through doorways, to climbing ladders and driving cars. Recently, the idea of “superhero” robots has become popularized by the DARPA Robotics Challenge\(^1\), where humanoid robots replace humans in dangerous disaster-relief tasks such as search and rescue deep within a burning building, lifting rubble off a trapped citizen, or finding and shutting off a critical valve in an unstable nuclear facility. This is an ideal which researchers are currently working toward, but the humanoid robots that exist right now are a far cry from matching the agility of flesh-and-blood humans. This work is intended to extend the mobility of agile humanoids.

Despite the popular opinion of modern robotics, the field is relatively new and relatively unexplored. Robotics was born after World War II as remote manipulators for handling radioactive material \(^35\), but these were simply rigid mechanisms to begin with, with a mechanical linkage connecting the human-operated controls to the manipulator. The linkages connecting the “master” unit to the “slave” manipulator were eventually replaced with electric circuits and the human operator replaced by an electronic control system. The co-development of Computer Numerical Control (CNC) transformed these remote manipulators into full-fledged robots as we know them today, allowing for pre-programmed trajectories to be followed precisely and repeatably \(^32\). Naturally, CNC robots like the T3\(^2\) and PUMA\(^3\) found ubiquitous use in assembly lines, where repeatability is critical.

Classical design and control techniques have been applied to walking robots, and they have been proven to be inefficient and vulnerable to disturbances. Several new robots are now utilizing the passive behavior of the mechanism for efficiency and robustness at the hardware level instead of relying solely on control techniques. Due to the model used to design the new “spring-mass” robots, they mostly have point-contact toes, which result in an instability around the yaw axis. Additionally, elastic collisions at the ground cause the toe to chatter, also decreasing stability. To increase the robustness of these robots, a foot needs to be designed which removes sources of instability with surgical precision, without affecting the carefully-planned dynamics of the existing system.

The result of this work is a lightweight, passive foot for the ATRIAS\(^4\) agile running bipedal robots currently located at Oregon State University’s Dynamic Robotics Lab (DRL), the University of Michigan’s Control Systems Laboratory, and Carnegie Mellon’s Robotics

1 The DRC was featured in the February 2013 issue of Popular Science magazine \(^45\).
2 The Tomorrow Tool, 1973
3 Programmable Universal Machine for Assembly, 1978
4 An acronym for “Assume the Robot is a Sphere”, referencing the template model under which it is designed.
Institute. ATRIAS is funded by DARPA’s Maximum Mobility and Manipulation (M3) program to significantly improve robot mobility and was designed at the DRL by Jonathan Hurst and a team of undergraduate and graduate students, including the author (Figure 1). A single prototype foot was created in fulfillment of the OSU Mechanical, Industrial, and Manufacturing Engineering (MIME) Capstone Design course and tested for effectiveness, then revised for the optimal design.
BACKGROUND

The DRL at Oregon State University is currently exploring spring-mass walking with the bipedal robot ATRIAS: a walking, running, agile biped robot designed with efficiency and robustness in mind (Figure 1). These properties are achieved in the mechanism of the leg rather than through control policies.

ATRIAS has a rigid torso and two legs, each with three degrees of freedom: leg extension, leg swing, and hip abduction. The legs themselves have two Series Elastic Actuators (SEAs), controlling both the thigh and shin torque relative to the torso, and below which there is a nearly massless carbon fiber leg with a point toe. The springs allow ATRIAS to behave like the Spring Loaded Inverted Pendulum (SLIP) model and follow spring-mass trajectories, which are known to be energetically conservative and highly stable.

The following sections discuss the design philosophy behind ATRIAS, why it needs feet, and why the feet must carefully preserve the purposefully-designed properties which currently exist in ATRIAS.

2.1 CLASSICAL WALKING ROBOTS

Engineers have a great amount of knowledge and experience in the classical form of robotics and control but modern machine-walking research is still having a lot of trouble creating walking robots; it seems that the classical methods we have learned over the last 60 years do not apply when it comes to reproducing the walking and running gaits in animals. Nearly all classically-designed walking machines use what is known as Zero-Moment Point (ZMP) control, where the control system prescribes joint angles and velocities which maintain the overall center of pressure of the robot within its base of support [47] (see [31] for a detailed exploration of classical walking robots). This method has produced robots which are effectively “moving statues”, where at any point in time it is perfectly stable. In order to achieve quasi-static stability, the robot must know exactly where it is in space and must have an accurate map of the environment, because any unexpected drops will produce large shock-loads on the rigid drive train. Such restrictions amplify the cost of the system and severely limit its region of operation, and it is often the case that classically-designed walking robots cannot run (with the exception of Honda’s ASIMO [25]), as that would require an expensive inertial-measurement unit and specialized, high-speed electronics to extrapolate the exact moment and velocity of touchdown from the robot’s ballistic trajectory, then match the rigid leg’s velocity to ground for a soft touchdown. If there is any error in this calculation or the execution of ground-speed matching, there will be a sharp impact force which propagates through the rigid mechanism and could cause damage.
These robots can walk and climb stairs in a stable manner, but they have large energetic costs and are vulnerable to disturbances. ZMP control tends to create level Center of Mass (COM) trajectories which waste energy in the anthropomorphic leg design [29]. Large reflected inertias and rigid links make ZMP robots unsuitable for stable traversal of uncertain terrain. So, what are these robots missing that makes biological systems so flexible?

2.2 ANIMAL LOCOMOTION

Animal motion looks almost effortless when compared to the squat-walking gaits of ZMP machines, so what fundamental properties of animal locomotion can be leveraged to create a more agile machine? Three requirements for robots are clear: mobility, efficiency, and robustness.

2.2.1 Mobility

There is a small paradox when considering efficiency in the natural world: engineers consider wheels to be the epitome of efficiency, but animals lack wheels! When it comes to efficiency in nature, the classical argument against animals’ evolution of “wheels” as a principal means of locomotion is the problem of transporting nutrients and nerve signals to a continuously-rotating limb. However true this may be, it is far more important to understand that wheels inherently lack mobility [30]; their efficiency is limited to hard, smooth ground. Animals have developed segmented limbs for their versatility, increasing the mobility and fitness the species.

2.2.2 Efficiency

Mechanical efficiency of locomotion is very closely tied to the idea of passive dynamics: the fundamental dynamics of a system, in absence of any control or actuation. If the “path of least action” [19] coincides with the desired path, then the control system can remain maximally effective, only doing work to counteract frictional losses to heat. Brachiating Gibbon monkeys follow conservative pendular trajectories [46], fish can utilize the energy in vortices to swim upstream at zero metabolic cost [7], and kangaroos have extremely efficient tendons to cycle energy in their bounce [5].

It is important that the system not spend calories to remove mechanical energy from its gait when that energy could be conserved and used again. Muscles acting as brakes not only recover zero energy, but also require metabolic energy. Braking muscles are doubly avoided in steady, efficient locomotion for these reasons. This applies to walking robots as well [48]. Walking animals use elasticity in their tendons to conserve and re-use the majority of gait energy [6, 3, 14].

2.2.3 Robustness

In natural systems, the line between control and passive dynamics is blurred; the two systems meet at certain points to handle disturbances and maintain stability. Reacting
to disturbances involves much more than “recognizing” that something has occurred, because it has been shown that humans take “action” in response to a disturbance much too fast for that action to have originated from the brain [18]. What appears to be deliberate action in the animal is actually the involuntary and instantaneous motion of the body as a result of favorable passive dynamics in the system. The resulting integrated system is self-stabilized simply due to its passive dynamics [43, 15].

2.2.4 Application to Walking Robots

Passive dynamics are considered as the key to efficient walking machines [33, 16]. However, the passive dynamic walkers are extremely limited in mobility (just like wheels), so ATRIAS uses a fundamentally different but equally efficient set of passive dynamics to extend the capability of walking machines.

2.3 MODEL FOR AMBULATION

Giving ATRIAS a useful set of passive dynamics first requires a template model which incorporates efficiency and robustness [20]. Biologists in the 1980s developed the “bouncing ball” model for running, which was formalized as the SLIP [10] and later applied to walking [21]. The SLIP is a template model with a point mass and a massless leg spring, and it can represent any system with a COM, a ground contact, and an effective stiffness between those two points. It has been shown to accurately reproduce the COM trajectory of animals along with the corresponding ground-reaction forces for walking and running [13].

Simulations of this model have shown it to be inherently stable, in that a monoped with fixed touchdown angle will take a number of steps before falling [22, 37]. This has a large implication for the field of dynamic walking: even with feedback errors and uncertain terrain, a spring-mass robot can walk or run stably.

One of the realities which is lost on the SLIP model is a rolling center of pressure beneath the foot, which is of great importance in humanoid walking (and other human activities, such as dance). Instead, the SLIP model assumes an immovable point contact with the ground as long as the leg experiences some compression. This fact is important when designing feet for spring-mass walking robots developed from the SLIP model.

2.4 FORCE CONTROL

A new class of compliant manipulators began at MIT with the SEA² [38]. This actuator uses a compliant element with a known force-displacement curve in series with a motor to allow for the direct control of forces, where classical systems can only control position. The SEA will assume whatever length is necessary to apply a desired force, whereas classical robots apply whatever force is necessary to reach a desired position. Given that

1 The Cornell Ranger can walk a 40.5 mile ultra-marathon on a closed track [9].
2 also known as a Force Control Actuator (FCA)
a prime motivation for animal control patterns is to not damage itself, it seems that force control can be heavily applied to walking robotics. ATRIAS incorporates a pair of SEAs to allow for force control in both the leg-length and leg-angle directions.

2.5 NEW PARADIGM FOR WALKING ROBOTS

With the SEA and the SLIP model, several robots have been built with fundamental leg compliance and have experienced positive results (Raibert hoppers [40], resonant hopper [8], self-stabilizing monopod hopper [42], Bow-Leg Hopper [11], ARL Monopod [2], Thumper [27], FastRunner [17], ATRIAS [23, 41, 26]). These robots are energetically conservative and naturally stable due to the spring-in-series design.

2.6 EFFECTS OF A POINT-CONTACT TOE

Most current spring-mass walking robots have point-contact toes as described by their SLIP template model. This is a very physical interpretation of the SLIP model which is reasonable for use in a planar space, but creates instabilities when running in 3D [24].

Currently, ATRIAS is attached to a planarizing boom shown in Figure 3, so it can only walk in a circle. This is enough to test the robot’s efficiency and stability [26], as well as prototype optimal controllers, but the ultimate goal for ATRIAS is stable walking and running out in the real world. Preliminary 3D walking results have come from the DRL’s sister lab at the University of Michigan, which has an identical copy of ATRIAS, which they call MARLO [12]. These experiments have shown that the momentum of the torso tends to spin ATRIAS around its single point of contact, much like a top\(^3\). This is a troubling source of instability, and in order to remove it, ATRIAS needs a very special foot: one which restricts the inertial yaw oscillations of the torso while also respecting the very strict requirements of spring-mass walking.

\(^3\) See [36] for video.
2.7 Effect of Leg Mass

A physical robot must diverge from the SLIP model in that the leg will have mass. (A real-world robot will have a model more similar to a two-mass spring system). This leg mass will experience elastic collisions at the ground, repeatedly breaking and re-establishing ground contact, which is a major source of instability in walking machines. Alexander and Bennett provide a foundational argument for foot pads in animals, where the compliant pads soften ground impacts, decelerate the leg mass, and prevent a loss of ground contact during stance phase (a phenomenon they call “chattering”), and present a simple rule of thumb to prevent this: the foot stiffness must be no more than five times the stiffness of the leg [4]. In addition, a progressive spring will tend to chatter less than a linear spring. Tests performed on human feet [6] and metacarpal foot pads [4] show a stiffening force-deflection curve, substantiating the use of nonlinear foot springs.

2.8 The Need for Feet

Point-contact toes and leg mass instabilities can both be addressed with the construction of a purposefully-designed foot for spring-mass walking robots, which themselves have subtle designs. To be considered an anchor for the SLIP model, a spring-mass robot must have a COM at the hip, a nearly-massless leg with series compliance, and a free pivot which remains in contact with the ground as long as there is compression in the leg. So, any foot to be added to the robot must adhere to these specifications.
Considering the precise assumptions of spring-mass walking machines, the requirements for an accompanying foot should be equally well constructed. Table 1 shows an enumerated list of requirements that must be fulfilled for a dynamically non-destructive foot for spring-mass walking machines. These items stem from assumptions made about the SLIP model, such as zero leg or foot mass, a single fixed point of rotation during stance phase, and no contact during swing phase (reqs. 3, 4, and 5).

A multiple-contact foot (req. 1) is the main motivation of this work, as spring-mass walking machines were designed with perhaps too much focus on the planar SLIP model, neglecting the fact that there is an unstable third Degree of Freedom (DOF) in the yaw direction for point-contact toes. Chatter is another concerning source of instability, so req. 2 seeks to apply some compliance and damping in the same way that animals have foot pads to limit the effect of unsprung mass in the leg.

While ideally these robots could operate without knowing the exact moment of touchdown (taking full advantage of the inherent stability in spring-mass walking), present controllers need a ground-contact signal to know which legs are on the ground (req. 6).

This prototype is designed to fit on the ATRIAS series of robots, which have a standardized coupling on their shins for exactly the purpose of experimenting with new toe and foot designs (req. 7).

The final requirement is listed simply for completeness, and it could otherwise be taken for granted that the foot must be strong enough to not yield under normal operation (req. 8). Failure by yielding within a certain safety factor can be estimated using a Finite-Element Analysis (FEA) software package.

<table>
<thead>
<tr>
<th>Req</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Resists disturbance torques in the ground plane (2 DOFs only)</td>
</tr>
<tr>
<td>2</td>
<td>Resists chatter</td>
</tr>
<tr>
<td>3</td>
<td>Pivots freely at the ground</td>
</tr>
<tr>
<td>4</td>
<td>Minimizes distal mass</td>
</tr>
<tr>
<td>5</td>
<td>Does not allow ground contact during swing phase</td>
</tr>
<tr>
<td>6</td>
<td>Senses ground contact at stance phase</td>
</tr>
<tr>
<td>7</td>
<td>Fits on ATRIAS’s carbon-fiber shin without any modification to the robot</td>
</tr>
<tr>
<td>8</td>
<td>Withstands operational forces</td>
</tr>
</tbody>
</table>

Table 1: List of requirements. Underlines indicate a SLIP assumption which should be very carefully maintained.
DESIGN SPACE

The foot design can be separated into three subsystems: foot geometry, contact sensing, and ground clearance. Design variation within each subsystem defines a space of possible solutions which will be explored in this chapter.

4.1 FOOT GEOMETRY

The foot geometry is the overall structure of the foot, including mechanisms, degrees of freedom, and the shape of the footprint. Altogether, the foot for ATRIAS must have exactly two degrees of freedom and no more. With this limitation in mind, consider that there exist only three kind of footprint classified by how many degrees of freedom exist between the foot and the ground under the condition that the foot is fully planted and not sliding. First, point-contact toes can be easily ignored, as they have three degrees of freedom (this is the problem with ATRIAS’s original toe!). The two other classes of footprint are line contacts, which have a single degree of freedom, and plane contacts, which cannot move relative to ground. With a planar footprint, two degrees of freedom must be added to the ankle to account for the zero degrees of freedom at the ground contact. This increases the mechanical complexity of the foot and will certainly increase the weight, which should be fervently avoided. This leaves the line contact, which will require only a single ankle DOF to bring the footprint’s single DOF up to the required two. This design is like the one employed by Gill and Jerry Pratt’s Spring Flamingo [39].

4.2 CONTACT SENSING

There are a great many possibilities to incorporate sensing into the foot in a lightweight manner. The classical approach usually includes a 6-axis force/torque sensor at the foot, but that is overkill for simple contact sensing, they are expensive, and they are heavy.

4.2.1 Artificial Foot Pad

Meng Yee Chua and Sangbae Kim prototyped an artificial paw pad, incorporating pressure and other sensors to sense ground contact for the MIT Cheetah quadruped [34]. This technology would be exceptional to include if it were not for the manufacturing difficulty and implementation details.
4.2.2 Ground Profile Sensing

Kajita and Tani perform full ground profile sensing with an ultrasonic ranger [28]. To sense ground contact, the distance measurement would be compared to some threshold. The same could be done with an infrared optical sensor.

4.2.3 Absolute Remote Positioning

A motion-capture system could be used in the lab space to gather accurate position data for ATRIAS and the foot. Small reflective markers would be attached to the foot and identified by an array of video cameras. These video signals would be passed through special motion-tracking software, and the absolute position of the markers within the viewing volume would be returned at discreet moments in time. With the position measurement of multiple markers, the location and orientation of the foot can be found, and the angle of the foot and the height of the ankle can be compared to the ground at that point to determine contact. However, Vicon systems are prohibitively expensive and can only be used in a controlled and static environment.

4.2.4 Estimated Local Positioning

To achieve the same position and orientation signal as would be produced by a motion-capture system in a local package, lightweight accelerometer chip can be attached to the foot. However, these sensors tend to drift, requiring some sort of correction [49]. While possible, this method could be too complicated when the only data required is a binary signal of “on” or “off” the ground.

4.2.5 Direct Contact Sensing

Limit switches can be a very reliable way to sense contact directly by closing or opening a circuit based on the position of a short-stroke lever or button. This type of sensor should be set up in a momentary-off configuration, where a slight ground contact force actually relieves pressure from the limit switch, allowing it to turn off (Figure 4). This configuration has a large region of “contact” and only a small region of “no contact”, whereas a momentary-on configuration has the opposite. Having only a small region of “contact” (the signal we are looking for) will contribute to uncertainty in the measurement. In order to have a limit switch on the foot, it will need an added rigid body moving relative to the main body of the arch, which adds complexity and weight.
4.2.6 *Strain-Based Contact Sensing*

Strain gauges are the most appealing sensor, being steady-state, lightweight, and low-profile. These are small foil resistors which subtly change resistance when stretched, and they can be sensitive enough to measure the strain in metal when properly designed (nearly all force transducers use strain gauges attached to a carefully-designed metal structure). A benefit here could be the incorporation of the sensing element directly into the structure of the foot.

4.3 *GROUND CLEARANCE*

A design with an ankle DOF will require a return mechanism to maintain a fixed angle during swing phase and prevent oscillations which could cause the robot to trip. It is also possible to have a single-body design with no mechanical degrees of freedom which would not require any reset mechanism.

4.3.1 *Return Spring*

A return spring mechanism requires an adjustable set point for the arch angle relative to the shin, because it is not known exactly how the foot will behave when in operation with various walking or running gaits. It is also necessary to have an adjustable stiffness for the same reason. A very good candidate to serve this function is a simple return spring with damper.

4.3.2 *Single-Body Design*

A design with no mechanical degrees of freedom would always be in an acceptable configuration for touchdown, having only one possible configuration. The robot requires exactly two DOF at the foot, so some cleverness would have to be employed for a single body.
POSSIBLE SOLUTIONS AND SELECTED DESIGN

From the design space, two possible designs stand out as acceptable solutions (Figure 5). One has a single \textbf{DOF} with a return spring, while the second is a flexible single-body design with a linear footprint when compressed. For now, the skate design is considered, while the single-body “hoop” is also presented as valid and useful but has too subtle a design to be refined in only a few design iterations.

\section*{5.1 Possible Designs}

Strain gauges can be built into almost any structure for ground contact sensing, but the linear footprint limits the design choices for maintaining ground clearance during swing phase. After this narrowing of the design space, only two types of foot present themselves:

\subsection*{5.1.1 Skate Design}

The skate has a single ankle DOF (plantarflexion, or pitch), which can easily be controlled with a passive return spring. This spring is set so that the foot is parallel with the ground during midstance, maximizing ground clearance for a symmetric gait.

\subsection*{5.1.2 Hoop Design}

The hoop has zero moving parts, and could fall under the umbrella of soft robotics in the sense that it utilizes the behavior of elastic materials under load. This design has two rolling degrees of freedom, one in the pitch direction and the other in roll. For a rigid body, two rolling \textbf{DOFs} would imply a point contact, but the elastic hoop will flatten and form a line contact with the ground when loaded. This is a very appealing design, but requires a large amount of composites knowledge to get the desired behavior. The heavy downside is that the hoop will have some compliance in the yaw direction, and would have to be carefully designed to minimize that motion.

\section*{5.2 Selected Design}

For reasons of fabrication and assembly, the skate design will be pursued, as the hoop design would be difficult to design a composite structure which has exactly the stiffness properties necessary to be compliant along the leg length but stiff in the yaw direction. This is unfortunate, because a single-body design would reduce complexity and remove the need for a return spring mechanism. However, it is much more likely that the skate design will withstand the punishment of repeated ground impacts on a running machine.
Also, only the skate design has the facility to be actuated in the future, should it be desired. The full design is shown in Figure 11 with the bill of materials in Table 2.

5.2.1 Ankle Body

The body of the foot will have a base, which attaches to the shin of the robot and to two plates which reach down to the ankle joint. These parts designed for 6061 Aluminum stock, which is easy to obtain, but weight reduction features are necessary to bring the mass of the foot to a minimum. For the prototype, weight reduction is not taken as far as it could be, simply to allow for a quick production turnaround. This argument is common for prototyping work.

5.2.2 Arch

An arch structure is necessary to support the weight of the robot on the foot pads. It can be analyzed as a two cantilevered beams. The distance between ground contact points was chosen to be symmetric around the ankle axis and arbitrarily six inches apart, simply to have aesthetic proportions with the ATRIAS robot. As a result of these decisions, each cantilever must support 1500 N peak loads at a distance of 75 mm.

The arch was heavily optimized for weight, with a tapered I-beam section to keep stresses constant along the length of the cantilever. FEA was performed in the SolidWorks Computer-Aided Drafting (CAD) package to ensure the stress at any point in the arch is within a safety factor of 2 from the yield strength of 6061-T6 Aluminum. The simulation in Figure 6 shows that the given design has a minimum Factor of Safety (FOS) of 2.2 below the yield strength of 275 MPa.

Because this is a weight-bearing structure, there are large peak forces which require a stiff construction to prevent yielding strains. A strain gauge applied to this stiff structure will have a range from zero to the full load of the robot during running, and the resolution of the signal digitizer will be spread across this range. The controller requires the most sensitivity in the range of zero to ten Newtons, so it is likely that a strain gauge applied to the load-bearing parts of the arch will not be sensitive enough for ground-contact
14 possible solutions and selected design

(a) Stress distribution. Max stress is 123 MPa, and yield strength is 275 MPa.

(b) Factor of Safety distribution. Minimum FOS is 2.2.

Figure 6: SolidWorks loading simulation showing von Mises stress and factor of safety in the arch. Symmetric boundary condition at the midsection and distributed load at the pad.

sensing. A more favorable design would have a soft structure for the strain gauge in series with the stiff structure, and the section dedicated to sensing would bottom-out on the load-bearing section to prevent failure of the sensing element. The simple arch design is followed, knowing that a limit switch or slide potentiometer could be easily attached after-the-fact if the strain gauge proves to be useless for contact sensing.

5.2.3 Ankle Joint

The ankle joint is the combination of plastic plain bearings and a precision-ground steel shaft, which allows the arch to rotate freely from the ankle body. Igus z-glide flanged bearings provide journal and thrust support with negligible impact on the weight of the foot. These bearings are not completely frictionless, but the small amount of damping they provide will help remove foot oscillations from swing phase without affecting the overall dynamics of the robot.

5.2.4 Pads

The pads could possibly be the most important part of the foot, connecting the robot to the ground during stance phase. The pads must have compliance enough to prevent chatter and traction enough to resist yaw torques. One technique which has worked in the past has been a composite fiberglass-urethane skin surrounding a shock absorbing sorbothane pad [1].

The most convenient method of covering sorbothane in a composite skin is to use a simple-curve substrate, in this case a half-cylinder, to allow sheets to be wrapped and layered. Figure 7 shows a cross-section of the foot pad design.

These foot pads are attached to the arch using a small fastener for clamping pressure and a shear pin to firmly hold the pad in place during stance phase. A shear pin is necessary when there are such large shear forces on the ground while running to prevent slipping of the pad beneath fasteners and progressively loosening.
The selected design achieves ground contact sensing in a simple manner, without any added weight or moving parts, by annexing the arch of the foot as a load cell. As shown in Figure 8, the arch is a symmetric cantilever structure, and ground contact can be sensed by measuring the strain due to the loading at its ends.

Four strain gauges are applied to the location of maximum strain on a single cantilever, and the gauges are set up in a full-bridge configuration for maximum sensitivity (Figure 9).
Figure 9: Cross-section of one cantilever showing strain gauge placement. The excitation voltage (EV) and differential output (DO) are the four nodes of the Wheatstone bridge.

Figure 10: Diagram showing the relationship between electrical and physical properties. (a) The three possible loading modes for the cantilever and the resulting output voltages. The relative length of the strain gauges indicates physical strain. (b) shows how the gauges’ geometric placement maps to their location in the Wheatstone bridge.

Ground contact sensing in this manner will require two 350 Ohm, double-linear strain gauges per foot (Table 5.3).

The Wheatstone bridge has only one output signal and three possible loading modes, so the circuit must be configured so that only one mode results in a signal. To reduce the three inputs to a single output, the desired loading (bending due to ground contact) must result in an antisymmetric voltage change in the bridge’s output terminals, and all other loadings must result in a symmetric change. Figure 10 (a) shows how an antisymmetric change in node voltages results in a measurable output signal, while symmetric voltage changes do not register. Bending in the cantilever is geometrically symmetric, so a pair of compressive/tensile gauges must be electrically swapped to create the antisymmetric bridge. The electric position’s relation to geometric position can be directly seen in Figure 10 (b), where the gauge cross-section is shown inside the Wheatstone bridge circuit.
Figure 11: Exploded view of the foot prototype. Part numbers are associated with the bill of materials in Table 2
Table 2: Bill of materials. Part numbers are associated with the exploded view in Figure 11.

<table>
<thead>
<tr>
<th>#</th>
<th>Part Name</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ankle Body</td>
<td>1</td>
<td>Attaches the foot to the shin of the robot.</td>
</tr>
<tr>
<td>2</td>
<td>Ankle Plate</td>
<td>2</td>
<td>Bridges the gap between the ankle body and the ankle axis.</td>
</tr>
<tr>
<td>3</td>
<td>Plain Bearing</td>
<td>2</td>
<td>Z-glide plastic bearings from Igus are light and small.</td>
</tr>
<tr>
<td>4</td>
<td>Ankle Shaft</td>
<td>1</td>
<td>Provides a rotation point and support for the arch.</td>
</tr>
<tr>
<td>5</td>
<td>Arch</td>
<td>1</td>
<td>Double-cantilever beam supporting the foot pads.</td>
</tr>
<tr>
<td>6a</td>
<td>Pad Half-Cylinder</td>
<td>2</td>
<td>Rigid plastic structure used to build up the foot pad.</td>
</tr>
<tr>
<td>6b</td>
<td>Sorbothane Rectangle</td>
<td>2</td>
<td>Pad-like material to prevent chattering.</td>
</tr>
<tr>
<td>6c</td>
<td>Skin Rectangle</td>
<td>2</td>
<td>A tough fiberglass-urethane skin to add traction and prevent damage to the pad.</td>
</tr>
<tr>
<td>7</td>
<td>Shear Pin</td>
<td>2</td>
<td>Transfers shear force from pad to arch.</td>
</tr>
<tr>
<td>8</td>
<td>Strain Gauge</td>
<td>2</td>
<td>Double-linear gauges to be glued to the arch.</td>
</tr>
<tr>
<td>9</td>
<td>Spring Clamp</td>
<td>1</td>
<td>Clamps the return spring to the ankle shaft, allowing easy adjustments to the set point.</td>
</tr>
<tr>
<td>10</td>
<td>Shin Clamp</td>
<td>1</td>
<td>Anchors the free end of the leaf spring to provide the restoration force when deflected.</td>
</tr>
<tr>
<td>11</td>
<td>Cap Screw</td>
<td>11</td>
<td>Used for assembly.</td>
</tr>
<tr>
<td>12</td>
<td>Washer</td>
<td>11</td>
<td>Distributes clamping pressure without damaging the parts.</td>
</tr>
<tr>
<td>13</td>
<td>Flat-Head Screw</td>
<td>4</td>
<td>Bolts the ankle body to the shin of the robot.</td>
</tr>
</tbody>
</table>
Once the detail design is completed, the manufacture and assembly of the foot can begin. As discussed in the last chapter, the selected design will include a linear footprint, strain-gauge contact sensing, and a return spring for the single ankle DOF. The SolidWorks CAD package was used to draft the design and produce drawings for manufacture. Toolpaths for a Fadal CNC mill were produced with EdgeCAM, and the prototype was machined in-house. After all parts are ready, the foot prototype can be fully assembled.

6.1 CNC Machining

All machined parts were done at the Oregon State University Machining and Product Realization Lab (MPRL) to cut down on costs. Computer-Aided Manufacturing (CAM) was done in the EdgeCAM software package, and toolpaths (in the form of g-code) were generated for the Fadal VMC15 CNC Mill located in the MPRL. The arch and the ankle plates required CNC milling because of their curves and diagonal lines, operations which would be very difficult to do by hand. Each of the two CNC programs needed to be proofed in an easily-machinable material such as wax or foam to make sure there were no collisions or errors. Stock for these parts was ordered from McMaster-Carr’s online hardware store or salvaged from waste material of other projects. Figure 12 shows different stages of the milling process.

6.2 Sorbothane-Fiberglass-Urethane Foot Pads

The foot pads are constructed layer-by-layer from a plastic half-cylinder, sorbothane sheet, and fiberglass-urethane sheet. A nylon rod is cut in half and the two faces leveled using a fly-cutter in a manual mill. Each half-cylinder has a threaded hole and a hole for a shear pin added. A large swath of fiberglass-urethane sheet is made by laying out the fiberglass with warp and weave fibers at 90° on a flat surface covered in plastic wrap, then saturating it in the urethane. Plastic wrap is laid over the fiberglass and bubbles are worked out with fingers. A flat plate of aluminum is then used as a weight and a way to make the skin a uniform thickness.

To assemble the foot pad, a sorbothane sheet is cut to have the same area as the curved surface of the half-cylinder, and a sheet of the skin material is cut to wrap around the entire perimeter of the foot pad. The sorbothane sheet is glued in place with cyanoacrylate (common “super glue”). The skin material should not be glued to the sorbothane, because that would stiffen the compliant structure, so instead it is sewed together where the ends
20 Manufacture of the selected design

(a) CNC program of ankle plate. (b) Finished ankle plate. (c) Finished arch.

Figure 12: Stages of CNC machining the arch and ankle plates.

Figure 13: Assembled foot pads. Fibers run diagonally for increased strength.

meet on the flat surface of the half-cylinder and epoxied for a strong and permanent bond. The epoxied assembly is clamped into a mold to imitate the clamping pressure on the skin when the foot pad is attached to the arch; this will give the epoxy a uniform thickness and allow for a good distribution of clamping pressure after the epoxy dries. See Figure 7 for a construction diagram. Figure 13 shows the finished product.

6.3 Strain Gauges

Strain gauges are applied to the arch with cyanoacrylate using a common method, then a two-part epoxy is laid over the gauge for protection. Gluing the gauge to the arch requires acetone, teflon tape, and simple masking tape. The gauge application site is prepped by sanding it down to 400-grid and cleaning with acetone. The gauge is then positioned and a small piece of masking tape is used to secure the short edge opposing the contacts, which acts like a hinge and allows the gauge to be lifted. A small dab of glue is placed at the small edge stuck down with tape, and teflon tape is used to roll the dab of glue along the surface of the gauge and apply pressure necessary to cure the glue without fingers getting stuck as well. After the gauge is glued down, leads are soldered to the gauge’s
6.4 Assembly and Final Touches

After the machining process, the arch has large burrs on one side which need to be removed with a file (Figure 15b). When this is done, the foot pads can be clamped onto the arch and the ankle shaft glued in place with Loctite retaining compound. The zglide bearings are pressed into the ankle plates and the arch assembled together with the ankle body. Wires from the strain gauges are routed up to the ankle body and crimped into a connector for easy attachment and removal of the foot from the robot. A flexible carbon fiber return spring is attached, and the foot is now ready for testing.
(a) Immediately after machining.
(b) In the process of deburring.
(c) Foot pads added.
(d) Fully assembled foot.

Figure 15: Stages of foot assembly.
Figure 16: Foot mounted to ATRIAS.
Testing is performed on the foot prototype on the bench (that is, off the robot) so that results can be obtained without regard to which controllers were being run on the robot or the variability in the gait that comes with dynamic walking. Weighing all parts of the completed foot show the total mass to be 280 grams, which is roughly 10% of the total mass of the ATRIAS leg below the springs (2.5 kg, for reference). Mass, return spring stiffness, and stiffness at the ground interface for the prototype foot can be found in Table 3.

Table 3: List of relevant foot properties.

<table>
<thead>
<tr>
<th>Property</th>
<th>Measurement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>280</td>
<td>g</td>
</tr>
<tr>
<td>Ankle Stiffness</td>
<td>0.488</td>
<td>N.m / rad</td>
</tr>
<tr>
<td>Ground Contact Stiffness</td>
<td>250</td>
<td>N / mm</td>
</tr>
</tbody>
</table>

7.1 GROUND CONTACT STIFFNESS

The foot’s resistance to chatter is measured by comparing the approximate linear stiffness of the arch (including foot pads) to the linearized stiffness of the ATRIAS leg around the average leg length of 90 cm. The stiffness of ATRIAS is known to be 15 N/mm at 90 cm [1], but the stiffness of the foot must be measured using an improvised force-displacement test setup consisting of a bathroom scale, a digital caliper, and a drill press (Figure 17). The scale is placed on the bed of the press with an aluminum plate on top as a rigid datum for measuring displacement, the arch is placed on this datum with the pads facing up, and another flat aluminum plate is mounted in the quill of the press. The arch is then compressed between these two plates, with the force being measured from the scale and the distance between plates being measured with the caliper.

The deflection is then the difference between the zero-force distance between plates and each individual plate separation. This test is shown in Figure 18 with a resulting stiffness of roughly 250 N/mm, which 3.3 times greater than the maximum stiffness of 5 × 15 N/mm = 75 N/mm recommended by [4].

Simply adding a layer of sorbothane to the pad of the foot is therefore not sufficient to overcome the chattering problem, so all future designs must add further compliance to decrease contact stiffness below 75 N/mm.
Figure 17: Setup for the ground contact stiffness test. A scale is placed on the bed of a drill press and forces are applied through the quill. Separation of the two datum plates is measured.

Figure 18: Force-displacement data for the foot showing a nearly-linear relationship for small deflections (3 mm). The resulting stiffness is estimated at 250 N/mm.

7.2 Ankle Stiffness

Torque at various angular deflections is measured to ensure that the resulting disturbance force on the COM of the robot is minimal. The foot is mounted to a fixture, the return spring is put in place, and forces are measured using a torque wrench (Figure 19). Figure 20 shows the torque measured for angles up to 40 degrees. Given that the maximum torque at the ankle is 0.33 N.m, and the lever arm from the ankle to the hip of ATRIAS is exactly one meter, the disturbance force of the foot’s return spring is a mere 0.1 pounds. This force is entirely negligible given the 150 pound weight of the robot.
26 FIRST RESULTS

(a) Torque wrench. (b) Foot fixture.

Figure 19: Materials used in ankle stiffness test.

![Torque-Deflection Curve](image)

Torque−Deflection Curve
 Linear Fit, 0.488 N.m / rad

Figure 20: Torque-displacement profile for return spring mechanism.

7.3 YAW STICION TORQUE

It is principally important that the foot pads maintain a strong contact with the ground to resist inertial yaw torques from the robot, so a test is performed using a forceplate to measure both normal force (ground contact force) and the maximum stiction torque. A jig is created to hold the foot vertical on the forceplate (Figure 21a) and allow the tester to apply normal and twisting forces, which are directly measured by the forceplate. Based on calculations from an average ATRIAS running gait, the foot will need to resist yaw torques of 25 N.m. Figure 21b shows the results of the stiction test, which was terminated when the 25 N.m mark was surpassed.

7.4 SWING PHASE CONTACT TEST

Oscillation natural frequency and damping properties of the foot are characterized and overlaid onto measured foot position data from a real ATRIAS gait to determine ground clearance during swing phase. Angle trajectories of the foot are measured with a linear potentiometer, set up as a voltage divider, attached to LabVIEW through a myDAQ measurement device. The conversion between voltage and angle was done by simply mea-
Figure 21: Test setup and results for the yaw stiction torque test.

Measuring the voltage at known angles and deducing the constant of proportionality with \(\Delta V/\Delta \theta \). Figure 22 shows the oscillation test setup, in which the foot was “plucked” to excite oscillation. Two impulse responses are shown in Figure 23 along with one step response for variety. These responses were then brought into MATLAB and fit to a general 2nd-order system to determine the damping ratio and natural frequency for which the average measurements were 0.155 and 31.2 rad/s. Because the bearings in the foot are not perfect viscous dampers, as assumed by the 2nd-order model, Coulomb friction will also play a role to stop the oscillation more quickly than estimated, so the given damping ratio will be less than the actual.

When the oscillation of the foot is characterized, a simulated foot can be attached to real robot data to determine if excessive foot oscillation will cause ground contact during swing phase. Figure 24 shows the results of the simulated foot overlaid onto a real ATRIAS gait. The only condition imposed is a foot angle of zero relative to ground when the SLIP point contact is at ground level. There are no collision tests between the foot and ground, it is only important that there is a single heelstrike immediately before foot-flat.

7.5 TESTING SUMMARY

All test performed on the foot prototype meet expectations, except the stiffness of the ground contact, which is too stiff as a result of the aluminum arch and will potentially chatter on touchdown. Swing-phase oscillations of the foot will damp out completely within 400 ms, and simulation results show that the foot will likely not interfere with the robot while in the air. Torque tests also show that the return spring has a negligible impact on the COM trajectory of the robot during stance phase. The composite skin and compliant sorbothane pads give the foot enough traction to resist inertial forces on the robot during running.
Figure 22: Oscillation test setup. Blue box is a linear potentiometer which is held in place by a sheet of acrylic. Terminal leads go to an excitation voltage and the wiper voltage goes to the measurement device.

Figure 23: Oscillation test results. Left and middle graphs are impulse responses, and the right graph is a step response. The average damping ratio is 0.155 and the average natural frequency is 31.2 rad/s.
Figure 24: Simulated toe, and heel heights as a function of both time and distance. There is a clear heelstrike before midstance and no contact at all before that. This is a very encouraging result.
After testing was complete, it was clear that significant improvements could be made to the design in terms of weight reduction, materials, compliance, and spring-return; the revised design can be seen in Figure 25. It is estimated using the SolidWorks model for the revised design that the weight of each foot can be reduced from 280 grams to 120 grams, and given the time spent on FEA and topology optimization, this seems to be near an absolute minimum for the use of aluminum and fiberglass in a conventional machining process. The body of the foot could potentially be made even lighter using the new Selective Laser Sintering (SLS) technologies becoming widely available to construct more organic, sparse structures (imagine a miniature, three-dimensional network of trusses instead of homogenous aluminum in the ankle body).

8.1 Ankle Body

Firstly, the bulk of material on the ankle body and ankle plates (including fasteners) can be removed in favor of an optimized aluminum structure which spans the distance between the robot’s shin and the ankle shaft. Weight optimization is limited by the 3-axis milling process, where extra pockets generally require re-fixturing of the workpiece in the mill, so tradeoffs are made between absolute minimum mass and complexity of machining. In the prototype, the bearings had to be shortened to match the thickness of the ankle plates, so this design moves the bearings from the ankle body to the arch body so that the ankle wall can be made minimally thin and still have a large bearing surface in contact with the shaft, which now rotates with the ankle body instead of the arch. This change requires the return mechanism to operate in the small space (literally the wall thickness of the bearings) between the ankle shaft and the arch body. Luckily, the new return mechanism design will benefit from such a tight space.

8.2 Return Mechanism

A magnetic return mechanism is a very convenient way to apply restoring forces to the arch during swing phase, using only passive, internalized components. This mechanism is simply a magnetic dipole immersed in a constant magnetic field (Figure 26); the dipole will have one stable equilibrium position at 0° and one unstable position at 180°. Physically, the dipole is a set of cylinder magnets oriented along the diameter of the ankle shaft, and the constant field is generated by pairs of magnets surrounding the shaft and mounted to the arch body. Attractive forces that exist at the set point and repulsive forces at 180° will drive the arch toward the neutral position, which can be set by loosening
Figure 25: Rendered image of the revised foot design.

![Figure 25](image)

(a) Neutral position.
(b) Restoring torques.

Figure 26: A schematic showing the magnetic dipole embedded in the ankle shaft and the constant field attached to the arch.

...the set-screws holding the ankle shaft in place and rotating it relative to the body. Even the stiffness can be adjusted by using either more or fewer magnets in the arch body, strengthening or weakening the fixed field. A simple prototype of this mechanism has shown extreme promise.

8.3 Compliant Arch

The aluminum arch was far too stiff, so the revised design has layers of fiberglass plate which are extremely elastic and rub against each other during deflection, damping out oscillation. Clamping layers of fiberglass to form the arch is highly customizable, so fast iteration can be made on the thickness of layers, types of sheet stock, or even alternating layers of fiberglass and sorbothane for specific stiffness and damping properties.
Figure 27: An exploded view of the revised design. Part descriptions are found in Table 4.

8.4 Off-the-Shelf Pads

Since the fiberglass arch provides the compliance and damping necessary to prevent chatter, the complex foot pads of the prototype design can be replaced with off-the-shelf neoprene bumpers which can be ordered in bulk. This is a great boon for construction, as the prototype pads could get worn down or damaged and more would have to be made, but the new pre-made bumpers can just be pulled out of a bag.
Table 4: Bill of materials for the revised foot design. An exploded view can be seen in Figure 27.

<table>
<thead>
<tr>
<th>#</th>
<th>Part Name</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ankle Body</td>
<td>1</td>
<td>Attaches the foot to the shin of the robot.</td>
</tr>
<tr>
<td>2</td>
<td>Ankle Set Screw</td>
<td>2</td>
<td>Fixes the ankle shaft to the ankle body.</td>
</tr>
<tr>
<td>3</td>
<td>Arch Body</td>
<td>1</td>
<td>Rigid structure to support the new fiberglass arch.</td>
</tr>
<tr>
<td>4</td>
<td>Ankle Shaft</td>
<td>1</td>
<td>Provides a rotation point and support for the arch. Now includes magnets for the new return mechanism.</td>
</tr>
<tr>
<td>5</td>
<td>Fiberglass Arch</td>
<td>1</td>
<td>Layered fiberglass plates provide compliance and damping.</td>
</tr>
<tr>
<td>6</td>
<td>Arch Clamp</td>
<td>1</td>
<td>Clamps the layered arch together.</td>
</tr>
<tr>
<td>7</td>
<td>Fleat-Head Fastener</td>
<td>4</td>
<td>Clamps the fiberglass layers to the arch body.</td>
</tr>
<tr>
<td>8</td>
<td>Neoprene Bumper</td>
<td>2</td>
<td>Stock part from McMaster for easy replacement.</td>
</tr>
<tr>
<td>9</td>
<td>Washer</td>
<td>2</td>
<td>Distributes clamping pressure and prevents damage to the fiberglass.</td>
</tr>
<tr>
<td>10</td>
<td>Locknut</td>
<td>2</td>
<td>Clamps the bumpers to the fiberglass.</td>
</tr>
<tr>
<td>11</td>
<td>Magnet</td>
<td>18</td>
<td>Rare-earth magnets provide a permanent magnetic field for the return mechanism.</td>
</tr>
<tr>
<td>12</td>
<td>Plain Bearing</td>
<td>2</td>
<td>Z-glide plastic bearings from Igus are light and small.</td>
</tr>
<tr>
<td>13</td>
<td>Cap-Head Screw</td>
<td>4</td>
<td>Bolts the ankle body to the shin of the robot.</td>
</tr>
<tr>
<td>14</td>
<td>Strain Gauge</td>
<td>2</td>
<td>Embedded between layers of fiberglass.</td>
</tr>
</tbody>
</table>
Conclusions

Due to the simplistic nature of the SLIP model’s point-contact toe and the tendency for spring-mass walking machines to use the same point-contact on the real robot, modern bipedal robots currently have an unstable oscillation of the torso in the yaw direction due to unavoidable inertial forces when walking off-boom and in the three-dimension world. Without a foot, these robots have a tendency to spin like a top around a single point contact. The design of spring-mass walking machines places very narrow restrictions on how their dynamics can be changed, so creating a foot for these machines must be very carefully done to preserve the existing dynamics.

With surgical precision, the foot must permit only two degrees of freedom when in contact with the ground. Principally important is the weight of such a foot, as any added mass negatively affects the robot. Additionally, foot compliance is necessary to prevent ground-contact chatter.

The proposed design is a passive, skate-style foot with a linear footprint and single ankle joint to provide two degrees of freedom at the ground contact. A compliant arch softens the touchdown impact, limiting the chatter effect. An adjustable return mechanism is included to prevent the foot from tripping the robot. After the proposed design was prototyped with a 280 gram mass, revisions to the CAD model brought the mass down to an estimated 120 grams, which is only 4.8% of ATRIAS’s unsprung leg mass.

As of this writing, two of the revised feet are being built and will soon be tested on ATRIAS with the DRL’s state-of-the-art walking controllers.
BIBLIOGRAPHY

[1] DRL Tribal Knowledge.

COLOPHON

This document was typeset using the typographical look-and-feel classicthesis developed by André Miede. The style was inspired by Robert Bringhurst’s seminal book on typography “The Elements of Typographic Style”. classicthesis is available for both \LaTeX{} and LyX:

http://code.google.com/p/classicthesis/

Final Version as of May 29, 2014 (classicthesis 4.1).
UNIVERSITY HONORS COLLEGE COPYRIGHT RELEASE FORM

We are planning to release this Honors Thesis in one or more electronic forms. I grant the right to publish my thesis entitled, Preserving the Planar Dynamics of a Compliant Bipedal Robot with a Yaw-Stabilizing Foot Design in the Honors College OSU Library’s Digital Repository (D-Space), and its employees the nonexclusive license to archive and make accessible, under conditions specified below.

The right extends to any format in which this publication may appear, including but not limited to print and electronic formats. Electronic formats include but are not limited to various computer platforms, application data formats, and subsets of this publication.

I, as the Author, retain all other rights to my thesis, including the right to republish my thesis all or part in other publications.

I certify that all aspects of my thesis which may be derivative have been properly cited, and I have not plagiarized anyone else’s work. I further certify that I have proper permission to use any cited work which is included in my thesis which exceeds the Fair Use Clause of the United States Copyright Law, such as graphs or photographs borrowed from other articles or persons.

Corvallis, Oregon, May 28, 2014

Andrew M. Abate