1) Determine whether the following matrices are invertible:

\[A = \begin{pmatrix} 3 & -9 \\ 2 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & -9 \\ -4 & 6 \end{pmatrix}. \]

2) Find the inverse of the matrix \(A = \begin{pmatrix} 7 & 3 \\ -6 & -3 \end{pmatrix}. \)

3) Use your answer to Problem 2 to solve the linear system

\[
7x_1 + 3x_2 = -9 \\
-6x_1 - 3x_2 = 4.
\]

4) State whether the following are true or false. Explain your answer.

a) If \(A \) and \(B \) are both \(n \times n \) invertible matrices, then \(A^{-1}B^{-1} \) is the inverse of \(AB \).

b) If \(A \) is an \(n \times n \) invertible matrix, and \(B \) and \(C \) are both \(n \times p \) matrices satisfying \(AB = AC \), then \(B = C \).

5) State whether the following are true or false. Explain your answer.

a) Every elementary reduction matrix is invertible.

b) If \(A \) is an invertible \(n \times n \) matrix, then the elementary row operations that reduce \(A \) to \(I_{n \times n} \) also reduce \(A^{-1} \) to \(I_{n \times n} \).

6) Use matrix algebra to show that if \(A \) is an invertible \(n \times n \) matrix and \(D \) is a matrix which satisfies \(AD = I_{n \times n} \), then \(D = A^{-1} \). (Note what this statement is saying: if you already know that \(A \) is invertible, and you find a matrix \(D \) satisfying \(AD = I_{n \times n} \), then you can conclude that \(D = A^{-1} \) without checking to see if \(DA = I_{n \times n} \) as well.)

7) Find the inverse of the following matrix, if it exists:

\[C = \begin{pmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{pmatrix}. \]

8) Find the inverse of the following matrix, if it exists:

\[D = \begin{pmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{pmatrix}. \]
9) Let
\[A = \begin{pmatrix} -1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2 \end{pmatrix}. \]
Find the third column of \(A^{-1} \) without computing the other columns.

10) Suppose \(A \) is an \(n \times n \) matrix and that the equation \(A\mathbf{x} = \mathbf{0} \) has only the trivial solution \(\mathbf{x} = \mathbf{0} \). Explain why \(A \), when put in reduced echelon form, is the identity matrix \(I_{n \times n} \).

11) Suppose \(A \) and \(B \) are \(n \times n \) matrices, \(B \) is invertible, and \(AB \) is invertible. Show that \(A \) is invertible. (Hint: Let \(C = AB \), and solve this equation for \(A \).)