MTH 341 - Homework 5 (due Friday, October 13)

1) Let
\[v_1 = \begin{pmatrix} -2 \\ 0 \\ 6 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ -5 \\ 5 \end{pmatrix}. \]

Set \(A = (v_1 \ v_2 \ v_3) \), and let \(p = \begin{pmatrix} -6 \\ 1 \\ 17 \end{pmatrix} \). Is \(p \) in the column space of \(A \)?

2) Determine if the collection of vectors
\[\begin{pmatrix} 1 \\ 1 \\ -3 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} \]

is a basis for \(\mathbb{R}^3 \).

3) Determine if the collection of vectors
\[\begin{pmatrix} 3 \\ -8 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 6 \\ 2 \\ -5 \end{pmatrix} \]

is a basis for \(\mathbb{R}^3 \).

4) State whether the following are true or false. Explain your answer.

(a) If \(B \) is an echelon form of the matrix \(A \), then the columns of \(B \) containing leading entries form a basis for the column space of \(A \).

(b) The columns of an invertible \(n \times n \) matrix form a basis for \(\mathbb{R}^n \).

5) In parts (a) and (b) below, find a basis for \(\text{Col} \ A \) (the column space of \(A \)) and \(\text{Nul} \ A \) (the null space of \(A \)). State the dimension of these subspaces.

(a)
\[A = \begin{pmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{pmatrix}, \]

(b)
\[A = \begin{pmatrix} 3 & -1 & -3 & -1 & 8 \\ 3 & 1 & 3 & 0 & 2 \\ 0 & 3 & 9 & -1 & -4 \\ 6 & 3 & 9 & -2 & 6 \end{pmatrix}. \]
6) Let
\[v_1 = \begin{pmatrix} 1 \\ -5 \end{pmatrix}, \quad v_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}, \quad x = \begin{pmatrix} 1 \\ 9 \end{pmatrix}. \]
The vector \(x \) is in a subspace \(H \) which has basis \(B = \{v_1, v_2\} \). (You don’t need to show this.) Find the representation of \(x \) with respect to \(B \).

7) State whether the following are true or false. Explain your answer.

(a) The dimensions of \(\text{Col} \ A \) and \(\text{Nul} \ A \) add up to the number of columns in \(A \).

(b) The dimension of \(\text{Nul} \ A \) is the number of variables in the matrix equation \(A x = 0 \).

8) Construct a \(3 \times 4 \) matrix with rank 1.

9) Let \(A \) be an \(n \times p \) matrix whose column space is \(p \)-dimensional. Explain why the columns of \(A \) must be linearly independent.

10) Find a basis for the subspace spanned by the vectors
\[
\begin{pmatrix} 1 \\ -1 \\ -2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ -3 \\ -1 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 3 \\ -2 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 4 \\ -7 \\ 7 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -7 \\ 6 \\ -9 \end{pmatrix}.
\]

11) Find a basis for solution set of the linear system
\[
x_1 + x_2 + 5x_3 = 0 \\
2x_1 + 2x_2 + 10x_3 = 0 \\
-4x_1 - 4x_2 - 20x_3 = -0.
\]