MTH 341 - Homework 8 (due Friday, December 4)

1) Find the characteristic equation of the matrix
\[
\begin{pmatrix}
3 & 1 & 1 \\
0 & 5 & 0 \\
-2 & 0 & 7
\end{pmatrix}
\].

2) Find the characteristic equation of the matrix
\[
\begin{pmatrix}
4 & 0 & -1 \\
-1 & 0 & 4 \\
0 & 2 & 3
\end{pmatrix}
\].

3) For the matrix below, list the eigenvalues and state the multiplicity of each:
\[
\begin{pmatrix}
3 & 0 & 0 & 0 \\
6 & 2 & 0 & 0 \\
0 & 3 & 6 & 0 \\
2 & 3 & 3 & -5
\end{pmatrix}
\].

4) True/False. Justify your answer.

(a) An elementary row operation on \(A \) does not change its eigenvalues.

(b) An elementary row operation on \(A \) does not change its determinant.

5) Show that if \(A = QR \) with \(Q \) invertible, then \(A \) is similar to \(RQ \).

6) Show that if \(A \) and \(B \) are similar, then \(\det A = \det B \).

7) Consider the linear transformation defined by \(T(x) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \). Describe geometrically what \(T \) does to each vector \(x \) in \(\mathbb{R}^2 \).

8) Consider the linear transformation defined by \(T(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \). Describe geometrically what \(T \) does to each vector \(x \) in \(\mathbb{R}^2 \).

9) Let \(T \) be a linear transformation that maps \(u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \) to \(\begin{pmatrix} 4 \\ 1 \end{pmatrix} \) and maps \(v = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \) to \(\begin{pmatrix} -1 \\ 3 \end{pmatrix} \). Determine \(T(2u) \), \(T(3v) \), and \(T(2u + 3v) \).

10) Assume \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) is a linear transformation satisfying \(T(e_1) = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \), \(T(e_2) = \begin{pmatrix} -2 \\ 9 \end{pmatrix} \), and \(T(e_3) = \begin{pmatrix} 3 \\ -8 \end{pmatrix} \), where \(e_1 \), \(e_2 \), and \(e_3 \) are the columns of
$I_{3\times 3}$. Find the standard matrix of T.

11) Determine if the linear transformation T given in exercise 10 is

 (a) one-to-one.

 (b) onto.

12) (a) Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates points in the clockwise direction $-3\pi/2$ radians (rotation is about the origin).

 (b) Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which first rotates points in the clockwise direction $-3\pi/4$ radians, and then reflects points through the horizontal x_1-axis.