SAMPLE FINAL QUESTION
MTH 420

1. CURVATURE OF A CURVE

Let \(C \) be a curve in (Euclidean) \(\mathbb{R}^3 \). Either using the heuristic argument

\[
ds^2 = dx^2 + dy^2 + dz^2 \quad \implies \quad ds = \frac{dx}{ds} \, dx + \frac{dy}{ds} \, dy + \frac{dz}{ds} \, dz
\]

where \(s \) is arc length, or by noting that the unit tangent vector \(\vec{T} \) to \(C \) satisfies

\[
\vec{T} \cdot d\vec{r} = \vec{T} \cdot \vec{T} \, ds = ds
\]

we see that it is natural to define \(T = ds \) to be the unit 1-form tangent to the curve \(C \). In practice, it is common to parameterize the curve using an arbitrary parameter \(t \), not necessarily arc length. In this case, the \(s \) derivatives are replaced using chain rule, and we have in general

\[
T = \frac{dx}{dt} \, dx + \frac{dy}{dt} \, dy + \frac{dz}{dt} \, dz
\]

\[
\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}
\]

FACT: If \(dT \neq 0 \), there is a unique positive function \(\kappa \) and a unique unit 1-form \(N \) such that \(N \) is orthogonal to \(T \) and

\[
dT = \kappa \, T \wedge N
\]

(If \(dT = 0 \) we define \(\kappa = 0 \) and \(N \) is not defined.) We call \(\kappa \) the curvature of \(C \).

(a) Find the curvature of a circle of radius \(R \).

(b) Find the curvature of the \(x \)-axis.

(c) Find the curvature of any other curve of your choice. You are encouraged to discuss your choice with me; overly simple curves may not receive full credit.