THE GEOMETRY OF SPECIAL RELATIVITY

Tevian Dray
Oregon State University

I: Circle Geometry
II: Hyperbola Geometry
III: Special Relativity
IV: What Next?
CIRCLE GEOMETRY

\[r\theta = \text{arclength} \]

\[\cos \theta = \frac{4}{5} \implies \tan \theta = \frac{3}{4} \]
WHICH GEOMETRY?

Euclidean

\[ds^2 = dx^2 + dy^2 \]

\[A = (-\sin \theta, \cos \theta) \]

\[B = (\cos \theta, \sin \theta) \]

\[\tan \theta = \frac{3}{4} \]

Trigonometry!
MEASUREMENTS

Width:

\[
\frac{1}{\cos \theta}
\]

Apparent width > 1

Slope:

\[m \neq m_1 + m_2\]
HYPERBOLA GEOMETRY

\[x^2 - y^2 = 1 \]

\[r_\beta = \text{arc length} \]

\[ds^2 = |dx^2 - dy^2| \]

\[\cosh \beta = \frac{1}{2} (e^\beta + e^{-\beta}) \]

\[\sinh \beta = \frac{1}{2} (e^\beta - e^{-\beta}) \]
HYPERBOLIC TRIANGLE TRIG

\[\beta \]

\[d \cosh \beta \]

\[d \sinh \beta \]

\[\beta \]

\[\alpha \]

\[\tanh \beta = \frac{3}{5} \]

\[\tanh \alpha = \frac{4}{5} \]
“right angles” are not angles!
 WHICH GEOMETRY?

<table>
<thead>
<tr>
<th>signature</th>
<th>Euclidean</th>
<th>Minkowskian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+ + ... +)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(− + ... +)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ds^2 = -c^2 \, dt^2 + dx^2 \]

\[B = (\cosh \beta, \sinh \beta) \]

\[\tanh \beta = \frac{3}{5} \]

Special Relativity!
\[
\frac{v}{c} = \tanh \beta
\]
\[
\tanh(\alpha + \beta) = \frac{\tanh \alpha + \tanh \beta}{1 + \tanh \alpha \tanh \beta} = \frac{\frac{u}{c} + \frac{v}{c}}{1 + \frac{uv}{c^2}}
\]

Einstein addition formula!
LENGTH CONTRACTION

\[\ell = \ell' \cosh \beta \]

\[\ell' = \frac{\ell}{\cosh \beta} \]
TIME DILATION
COSMIC RAYS

(Taylor & Wheeler, 1st edition, Ex. 42, p. 89.)

Consider μ-mesons produced by the collision of cosmic rays with gas nuclei in the atmosphere 60 kilometers above the surface of the earth, which then move vertically downward at nearly the speed of light. The half-life before μ-mesons decay into other particles is 1.5 microseconds (1.5×10^{-6} s).

- Assuming it doesn’t decay, how long would it take a μ-meson to reach the surface of the earth?

$$\frac{60 \text{ km}}{3 \times 10^8 \text{ m/s}} = 200 \text{ μs}$$

- Assuming there were no time dilation, about what fraction of the mesons reaches the earth?

$$\frac{200 \text{ μs}}{\frac{3}{2} \text{ μs per half-life}} = \frac{400}{3} \text{ half-lives}$$

- In actual fact, roughly $\frac{1}{8}$ of the mesons would reach the earth! How fast are they going?
COSMIC RAYS

\[\frac{400}{3} \text{ half-lives} = \frac{400}{9} \]

\[\frac{400}{3} \text{ half-lives} = \frac{400}{9} \]

\[\frac{v}{c} = \tanh \alpha = \frac{\sqrt{400^2 - 9^2}}{400} \approx 0.99974684 \]
\[
\frac{(60 \, \text{km})(1000 \, \frac{\text{m}}{\text{km}})}{(4.5 \times 10^{-6} \, \text{s})(3 \times 10^{8} \, \frac{\text{m}}{\text{s}})} = \frac{400}{9}
\]

\[
v = \frac{400}{\sqrt{400^2 + 9^2}} \approx .99974697
\]
TWIN PARADOX

One twin travels 24 light-years to star X at speed \(\frac{24}{25} c \); her twin brother stays home. When the traveling twin gets to star X, she immediately turns around, and returns at the same speed. How long does each twin think the trip took?

\[
\cosh \beta = \frac{25}{7}
\]

\[
q = \frac{7}{\cosh \beta} = \frac{49}{25}
\]

Straight path takes longest!
SUMMARY

- Lorentz transformations are hyperbolic rotations
- Beautifully treated in Taylor & Wheeler, 1st ed
- Removed from Taylor & Wheeler, 2nd edition
- Not currently covered in existing texts

http://www.math.oregonstate.edu/~tevian/geometry
WHICH GEOMETRY?

<table>
<thead>
<tr>
<th>signature</th>
<th>flat</th>
<th>curved</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+ + ... +)</td>
<td>Euclidean</td>
<td>Riemannian</td>
</tr>
<tr>
<td>(− + ... +)</td>
<td>Minkowskian</td>
<td></td>
</tr>
</tbody>
</table>

$$ds^2 = r^2(d\theta^2 + \sin^2\theta d\phi^2)$$

Tidal forces!
WHICH GEOMETRY?

<table>
<thead>
<tr>
<th>signature</th>
<th>flat</th>
<th>curved</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+ + ... +)</td>
<td>Euclidean</td>
<td>Riemannian</td>
</tr>
<tr>
<td>(− + ... +)</td>
<td>Minkowskian</td>
<td>Lorentzian</td>
</tr>
</tbody>
</table>

\[ds^2 = -dt^2 + a(t) \, dx^2 \]

Cosmology!

\(c = 1 \)

\[ds^2 = -(1 - \frac{2m}{r}) \, dt^2 + \frac{dr^2}{(1 - \frac{2m}{r})} + r^2 (d\theta^2 + \sin^2 \theta \, d\phi^2) \]

General Relativity!
THE GEOMETRY OF SPECIAL RELATIVITY

Tevian Dray
Oregon State University

http://www.math.oregonstate.edu/~tevian/geometry