ECON 626: Workshop in Efficiency and Productivity

Fall 2006, TR 10-11:50 am Ballard 310, 4 credits

R. Färe and S. Grosskopf
Office Hours:
R. Färe TR 8:30-9:30
S. Grosskopf TR 3:00-4:30

Overview
This course is a graduate seminar which focuses on theoretical and empirical issues of measurement of productive performance. We develop basic performance measures which satisfy reasonable index number properties and are easily estimated in the framework of activity analysis. This course is one of three courses required for a field in Econometrics.

As the major assignment in the course, student will be required to design a research project which employs (or extends) the methods developed in class. Typically the project would be an empirical analysis; students will be instructed in the use of OnFront which is software designed to implement the performance measures covered in class.

The course is designed for graduate students in economics, AREC, forestry, finance, business, management, industrial engineering, health and any other discipline where performance measurement is important.

Objectives

• The basic starting point is an understanding of axiomatic production theory and duality, which we shall review at the outset of the course.

• Knowledge of performance measures which satisfy reasonable index number properties and can be estimated in the framework of activity analysis.

• Familiarity with relevant theoretical and applied literature.

• Ability to apply appropriate performance measures to an empirical problem.

Learning Outcomes consistent with objectives

• Students able to use duality theory to arrive at testable hypotheses with available data.

• Students able to choose an appropriate performance measure to test hypotheses.

• Students able to undertake a literature search and write review of theoretical and applied literature related to a specific empirical issue.

• Students able to estimate and interpret appropriate performance measure in an empirical application.

• Students design a research project with a research question, hypotheses to be tested, review of relevant theoretical and empirical literature, collect appropriate data, estimate relevant performance measures and hypothesis tests, interpret and present results.

Assessment

• The midterm exam will test the student’s knowledge of duality theory and theoretical properties of various performance measures. The final project will also be assessed in terms of the student’s understanding and application of duality theory.
• The midterm includes a written assessment of the contribution of the classic references to the theory and practice of performance measurement. The project includes a written review of the literature relevant to the research question.
• Students will have ungraded computer lab assignments to ensure their ability to implement the performance measures they will be using in their projects.
• Students will receive feedback on the various components of their project over the course period. Revision is encouraged.
• Students will be graded on both presentation of their project as well as the written paper. The goal is to have the paper as a component of the student’s dissertation.

1 Requirements

Student will design a project, collect data, analyze, write up and present their results. There is one midterm.

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Points</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>30</td>
<td>Oct. 19</td>
</tr>
<tr>
<td>Project</td>
<td>70</td>
<td>Dec. 8</td>
</tr>
</tbody>
</table>

2 Prerequisites

ECON 611 or permission of the instructors.

Statement Regarding Students with Disabilities Accommodations are collaborative efforts among students, faculty and Services for Students with Disabilities (SSD). Students with accommodations approved through SSD are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through SSD should contact SSD at 737-4098.

Academic Honesty Please visit http://oregonstate.edu/admin/stucon/achon.htm for university policies regarding academic honesty.

3 Texts

Other required readings

• L. Simar and P. Wilson, Statistical Inference in Nonparametric Frontier Models: Recent Developments and Perspectives, Chapter 4, mimeo, 2005.

Some Other References

• Tim Anderson and Paul Rouse’s DEA dataset directory: www.etm.pdx.edu/dea/dataset
• Tim Anderson’s DEA bibliography: www.etm.pds.edu/dea/deabib.html
• DEA web page: www.DEAzone.com

4 Outline

Week 1
- Axiomatic Production Theory: Appendix: *New Directions*
- Data Generating Processes: Simar and Wilson, Chapter 4, pp. 1-10
- Assignment: Literature Search (due beginning of week 2)

Week 2
- Efficiency Indicators and Indexes: Essay One *New Directions*
- Assignment: Research question and reference list (due beginning of week 3)

Week 3
- Efficiency Indicators and Indexes: Essay One *New Directions*
- Assignment: Read Farrell (1957) and Charnes, Cooper and Rhodes (1978)
- Library Visit: literature and data search

Week 4
- Midterm

Week 5
- Productivity (Chapter 3, Färe and Grosskopf, *Dynamic DEA*)
- Computer Exercise Using OnFront
- Assignment: Data description (due end of week 5)

Week 6
- Environmental Performance: Essay Two *New Directions*
- Assignment: Write Up of Methods Section

Week 7
- Issues in Aggregation: Essay Three *New Directions*

Week 8
- Simar and Wilson, Ch. 4
- Assignment: Write-Up of Preliminary Results

Week 9
- tba
- Assignment: Rough Draft of Project

Week 10
- Presentations
- ‘Finals’ Final Draft of Project Due Friday, Dec. 8, 5 p.m.