ECE353: Probability and Random Processes

Lecture 1 - Introduction

Xiao Fu

School of Electrical Engineering and Computer Science
Oregon State University
E-mail: xiao.fu@oregonstate.edu

January 8, 2018
What is probability?

• We talk about probability every day in life:
 – e.g., “it is probably gonna rain tomorrow”, “my flight is likely to be delayed”, “it is possible that I can pass the exam”, ...

• In applied mathematics, **probability** is the measure of the possibility that an event happens. The measure is between 0 and 1.

• **Probability** lies at the heart of electrical engineering and computer science:
 – communications
 – radar
 – machine learning
 – artificial intelligence
 – data mining
 – speech and image processing
 – ...

ECE353 Probability and Random Processes X. Fu, School of EECS, Oregon State University
Sentence Completion
Classification

- Classification is one of the most basic tasks in machine learning.

Training

Testing: am I a cat or dolphin?
Topic Mining

Topic 1: Clinton, White House, Scandal, Lewinsky, grand jury...

Topic 2: Utah, Chicago, NBA, Jordan, Carl, jazz, bull, basketball, final,...

Topic 3: NASA, Columbia, shuttle, space, experiments, ...
Some Recent Results

Table 1: Mined topics from 5 classes of (1,683) articles of the TDT2 corpus.

<table>
<thead>
<tr>
<th></th>
<th>FastAnchor</th>
<th>AnchorFree (proposed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>allegations</td>
<td>poll</td>
<td>lewinsky</td>
</tr>
<tr>
<td>lewinsky</td>
<td>columbia</td>
<td>gm</td>
</tr>
<tr>
<td>clinton</td>
<td>shuttle</td>
<td>jazz</td>
</tr>
<tr>
<td>lady</td>
<td>space</td>
<td>nba</td>
</tr>
<tr>
<td>white</td>
<td>crew</td>
<td>utah</td>
</tr>
<tr>
<td>hillary</td>
<td>astronauts</td>
<td>finals</td>
</tr>
<tr>
<td>monica</td>
<td>nasa</td>
<td>game</td>
</tr>
<tr>
<td>starr</td>
<td>experiments</td>
<td>chicago</td>
</tr>
<tr>
<td>house</td>
<td>mission</td>
<td>jordan</td>
</tr>
<tr>
<td>husband</td>
<td>stories</td>
<td>house</td>
</tr>
<tr>
<td>dissipate</td>
<td>fix</td>
<td>series</td>
</tr>
<tr>
<td>president</td>
<td>repair</td>
<td>counsel</td>
</tr>
<tr>
<td>intern</td>
<td>rats</td>
<td>independent</td>
</tr>
<tr>
<td>affair</td>
<td>unit</td>
<td>president</td>
</tr>
<tr>
<td>infidelity</td>
<td>aboard</td>
<td>investigation</td>
</tr>
<tr>
<td>grand</td>
<td>brain</td>
<td>affair</td>
</tr>
<tr>
<td>jury</td>
<td>system</td>
<td>lewinksys</td>
</tr>
<tr>
<td>sexual</td>
<td>broken</td>
<td>relationship</td>
</tr>
<tr>
<td>justice</td>
<td>nervous</td>
<td>sexual</td>
</tr>
<tr>
<td>obstruction</td>
<td>cleansing</td>
<td>public</td>
</tr>
<tr>
<td>affair</td>
<td>dioxide</td>
<td>sexual</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:

ECE353 Probability and Random Processes

X. Fu, School of EECS, Oregon State University
Why do we care about probability?

• In science and engineering, normally we only have partial knowledge of the outcome of a certain process or experiment.

• However, we do know that certain outcomes are “more likely” than others.

• Example:
 – **Experiment**: call my friend in Minneapolis, Minnesota, to ask if it is now sunny or snowy.
 – the possible outcomes:
 \[
 \begin{align*}
 \text{sunny with probability } & 0.2 \\
 \text{snowy with probability } & 0.8
 \end{align*}
 \]

 – But what if you are told that now it is sunny in St. Paul (10 miles away)?

• In this course, we will introduce a relatively sophisticated machinery to handle things like the above.
Experiments, sample space, events

• In probability, a basic model is *repeatable experiments*.

• An **experiment** consists of *procedure, observations, and model*.

 – **Exp**: flip a coin 3 times. **Observation**: the side you see at each time. **Model**: head and tail are with equal probabilities.
 – **Exp**: flip a coin 3 times. **Observation**: the number of heads that you see. **Model**: head and tail are with equal probabilities.

• An **outcome** of an experiment is any possible observation.

• The **sample space** of an experiment is the set of fine-grained, mutually exclusive, and collectively exhaustive elementary outcomes.

• An **event** is a subset of the sample space.
Experiments, sample space, events

- **Example 1**: You visit a gas station for 3 times and fill up your tank. You count the number of times that you pay over 50 dollars.

- The sample space (denoted by S) is

$$S = \{0, 1, 2, 3\}$$

- Some events:
 - E_1: you paid over 50 dollars at least twice: $E_1 = \{2, 3\}$.
 - E_2: you paid over 50 dollars exactly twice: $E_2 = \{2\}$.
Experiments, sample space, events

- **Example 2**: You visit a gas station for 3 times and fill up your tank. You record the following at each time:

\[
\begin{cases}
0 & \text{if you paid less than $50} \\
1 & \text{if you paid over $50}
\end{cases}
\]

- The sample space is

\[S = \{000, 001, 010, 100, 011, 101, 110, 111\} \]

- different designs (including definitions of observation) leads to different sample spaces.
Experiments, sample space, events

- **Example 3**: You visit a gas station for 2 times and fill up your tank. You record exactly how much you pay at each time.

- For the first time, the outcome takes a value $\in [30, 70]$, and the same for the second time.

- What does the sample space look like?
Example 3: You visit a gas station for 2 times and fill up your tank. You record exactly how much you pay at each time.

- For the first time, the outcome takes a value $\in [30, 70]$, and the same for the second time.
Experiments, sample space, events

- **Example 3**: You visit a gas station for 2 times and fill up your tank. You record exactly how much you pay at each time.

- For the first time, the outcome takes a value $\in [30, 70]$, and the same for the second time.

- Consider an event:

 \[E_1 : \text{the first time you pay less than 38 and the second time less than 42.} \]
Experiments, sample space, events

- **Example 3**: You visit a gas station for 2 times and fill up your tank. You record exactly how much you pay at each time.

- \(E_1 \): the first time you pay less than 38 and the second time less than 42.
Experiments, sample space, events

• **Example 3**: You visit a gas station for 2 times and fill up your tank. You record exactly how much you pay at each time.

• \(E_1\): the first time you pay less than 38 and the second time less than 42.

Remark: Examples 1-2 are related to **discrete random variables** and example 3 **continuous random variables**; we’ll cover both cases.