Q1. Prove the following facts:

(a) \(P[A \cup B] \geq P[A] \). (5%)
(b) \(P[A \cup B] \geq P[B] \). (5%)
(c) \(P[A \cap B] \leq P[A] \). (5%)
(d) \(P[A \cap B] \leq P[B] \). (5%)

Q2. In an experiment, \(A, B, C \) and \(D \) are events with probabilities \(P[A] = 1/4 \), \(P[B] = 1/8 \), \(P[C] = 5/8 \), and \(P[D] = 3/8 \). Furthermore, \(A \) and \(B \) are disjoint, while \(C \) and \(D \) are independent.

(a) Find \(P[A \cap B] \), \(P[A \cup B] \), \(P[A \cap B^c] \), and \(P[A \cup B^c] \). (5%)
(b) Are \(A \) and \(B \) independent? (5%)
(c) Find \(P[C \cap D] \), \(P[C \cap D^c] \), and \(P[C^c \cap D] \). (5%)
(d) Are \(C^c \) and \(D^c \) independent? (5%)

Q3. For independent events \(A \) and \(B \), prove that

(a) \(A \) and \(B^c \) are independent. (10%)
(b) \(A^c \) and \(B \) are independent (5%)
(c) \(A^c \) and \(B^c \) are independent (5%)
Q4. Suppose that for the general population, 1 in 5000 people carries the human immunodeficiency virus (HIV). A test for the presence of HIV yields either a positive (+) or a negative (-) response. Suppose the test gives the correct answer 99% of the time. What is $P[-|H]$, the conditional probability that a person tests negative given that the person does have the HIV virus? What is $P[H|+]$, the conditional probability that a randomly chosen person has the HIV virus given that the person tests positive? (20%)

Q5. Answer the following questions:

(a) Prove that $P[A \cup B] = P[A] + P[B] - P[A \cap B]$ for any A and B (not necessarily disjoint). (10%)

(b) Now generalize: find a formula for $P[A \cup B \cup C]$ for any A, B, C (not necessarily mutually exclusive). (10%)