Structured Models II

- Discuss transient and asymptotic dynamics
- Define sensitivities, elasticities, and review their uses
- Explore an extended example with some additional analyses of a simple model if there is time!

Asymptotic and Transient Dynamics

Asymptotic:
- Function of matrix entries
- NOT affected by start point
- Also known as ergodic behavior

Transient:
- A function of start vector
- NO effect on long-term dynamics
- Transient period determined by matrix elements
- Deterministic, time-invariant entries

Asymptotic and Transient Dynamics

Asymptotic:
- Function of matrix entries
- NOT affected by start point
- Also known as ergodic behavior

Transient:
- A function of start vector
- NO effect on long-term dynamics
- Transient period determined by matrix elements
- Deterministic, time-invariant entries

Problem 3e on page 64 of Case:

The fictitious field shrew

Hopefully, you noticed that even after eight time steps, this 3 x 3 model had failed to converge to a stable stage distribution…

Excel Demo!

Eigenvalues and Eigenvectors

All biologically reasonable matrices of n stages will have n eigenvalues.

There will be a dominant eigenvalue

There will be a left and right eigenvector associated with that eigenvalue

Mathematical meaning and biological interpretation on the board…

Sensitivity and Elasticity Analysis

Used to explore system behavior

Sensitivity: which model entry has the greatest influence, e.g. on growth rate?

Matrix models have analytical solution using linear algebra

Iterative methods possible on ANY model

Sensitivity

\[
\frac{\partial \lambda}{\partial a_{ij}} = \frac{\mathbf{v}_i \mathbf{w}_j}{\langle \mathbf{w}, \mathbf{v} \rangle}
\]

“the rate of change in lambda relative to the rate of change in matrix entry \(a_{ij}\) is equal to the product of the \(i\)th and \(j\)th entries of the eigenvectors divided by the eigenvector dot product.”
Elasticity

Elasticity is the proportional change in lambda per proportional change in the matrix element.

\[e_{ij} = \frac{a_{ij}}{\lambda} \times \frac{\partial \lambda}{\partial a_{ij}} \]

Example: Another exel demo!!

Matrix entries and underlying demographic rates...

Note that formulas are for \(a_{ij} \)...

But, these entries may be composed of more than one vital rate: \(F=S_0b_x \)

Can calculate sensitivities and elasticities for underlying demographic rates

Elasticities of underlying rates will not sum to unity! Watch out!

Elasticity and Sensitivity, Summary

Use with caution
Interpret with care
Not a substitute for thoughtful, biologically informed management!

Still, very useful especially in situations where little data are available...

If more than one year of data exist...

Demographic data over time or a range of conditions
Demographic data for a series of treatments

What else can we do besides look at transient and asymptotic dynamics for each set of demographic rates?

Retrospective versus Prospective Analysis

So far, we have projected our models forward in time- what would happen if nothing changed?

This is formally known as a prospective analysis
Comparison of scenarios- “What if...?”

Example:

Burrowing owls’ dynamics are affected by both vole population cycles and pesticides...

- 4 years of demographic data
- Years included a peak and crash event for California vole populations
- Evidence that food shortage combined with low \(p,p' \)DDE levels caused harm to reproduction
Prospective Analysis

\[n_{(t+y)} = A_c A_p (A_a)^k n_{(t)} \]

- Peak year always followed by crash year
- Peak-crash followed by 1-10 average years
- For each cycle frequency, reproduction was reduced by up to 50% during crash year

Calculated long-term \(\lambda \) and sensitivities of \(\lambda \) to demographic parameters for each scenario

Retrospective Analysis

Suppose we have a series of matrices from demographic rates estimated over a range of conditions or years...

What changes in demographic rates led to the changes in population growth rate from year to year?

Also known as a “Life Table Response Experiment”, or LTRE.
Life Table Response “Experiment”

\[\lambda^{(m)} - \lambda^{(a)} = \sum (\theta^{(m)} - \theta^{(a)}) \frac{\partial \lambda}{\partial \theta} \bigg|_{(B_m + B_a)/2} \]

Which parameter most influences the changes in population growth compared to an “average” year?

- Peak year population growth almost entirely due to increased reproductive output
- Bad year population growth due to declines in adult (and juvenile) survival

Gervais, Hunter, and Anthony. Ecological Applications, in press.

Incorporating Variability

- Use more than one set of matrix values
 a periodic projection model-
- Incorporate uncertainty into matrix entries
 rates are means and variances, so the model is no longer deterministic
- Matrix entries can also be equations

Nonlinear dynamics, density dependence