Class Meetings: MWF 2:00PM - 2:50PM in STAG 210

Instructor: Chris Jennings-Shaffer
 - Office: KIDD 268
 - E-mail: jennichr@math.oregonstate.edu
 - Office Hours: Tuesday 10:00AM - 11:30 AM, Thursday 10:00AM - 11:30 AM, and by appointment as necessary

Required Text: Linear Algebra by Hefferson. This text is freely available at:
http://joshua.smcvt.edu/linearalgebra/

Prerequisites: MTH 254

Webpage: http://people.oregonstate.edu/~jennichr/MTH341F15/
This page will be updated throughout the course.

Attendance: Regular attendance is expected

Honor Code: Students are expected to be familiar with the Oregon State University’s Student Conduct Code. The code of conduct can be found at http://studentlife.oregonstate.edu/studentconduct

Students with Disabilities: Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term to discuss accommodations. Students who believe they are eligible for accommodations but who have not yet obtained approval through DAS should contact DAS immediately at 541-737-4098.

Course Description: This is a one quarter course serving as an introduction to linear algebra. Topics include systems of linear equations, matrix algebra, determinants, and computational aspects of eigenvalues and eigenvectors.

Learning Outcomes: Upon completing MTH 341 a successful student is expected to be able to do the following:
 - determine how many solutions a system of linear equations has and find them,
 - perform various matrix operators such as addition, subtract, multiplication, and finding inverses
 - calculate the determinant of a matrix and understand what the determinant implies,
 - understand and apply various concepts of vector spaces such linear independence, rank, basis, subspace, column space, and null space,
 - compute the characteristic polynomial of a matrix and determine eigenvalues and eigenvectors.

Course Assessment: Your overall grade will be determined by the following:
 - Homework 30%
 - Quizzes 10%
 - Midterm Exam 30%
 - Final Exam 30%
Homework Homework will be assigned weekly. While students may collaborate with others, each student must write up their own solutions independently. Late homework will not be accepted.

Quizzes Approximately every other week there will be a short in class quiz on Friday.

Exams We will have one midterm examination in class, tentatively scheduled on Wednesday October 28th. We have a final examination on December 10th from 9:30AM - 11:20AM at a location to be determined.

Faculty Evaluations You are strongly encouraged to complete an evaluation of the course at the end of the quarter. The online Student Evaluation of Teaching form will be available in week 9 and close at the end of finals week. Students will be sent instructions via ONID by the Office of Academic Programs, Assessment, and Accreditation. Students will log in to “Student Online Services” to respond to the online questionnaire. The results on the form are anonymous and are not tabulated until after grades are posted. Course evaluation results are very important and are used to help improve courses and the learning experience of future students. Results from questions are tabulated anonymously and go directly to instructors and unit heads/supervisors. Unless a comment is “signed”, which will associate a name with a comment, student comments on the open-ended questions are anonymous and forwarded to each instructor. “Signed” comments are forwarded to the unit head/Supervisor.