Solutions

Name:
MTH 355 Midterm

No notes nor calculators are allowed.

1 (5 points).
(a) Prove the distributive property with a truth table

\[A \land (B \lor C) = (A \land B) \lor (A \land C). \]

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

↑

Columns match
(b) Use part (a) to prove the distributive property

\[X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z). \]

\[
X \cap (Y \cup Z) \\
= \{ a \mid a \in X \wedge a \in Y \cup Z \} \\
= \{ a \mid a \in X \wedge (a \in Y \vee a \in Z) \} \\
= \{ a \mid (a \in X \wedge a \in Y) \vee (a \in X \wedge a \in Z) \} \\
= \{ a \mid (a \in X \cap Y) \vee (a \in X \cap Z) \} \\
= (X \cap Y) \cup (X \cap Z)
\]
2 (2.5 points). Determine whether each statement below is true or false.

(a) $\forall x \in \mathbb{R} \exists a \in \mathbb{R}$ with $|x| < a$. True

(b) $\exists a \in \mathbb{R}$ such that $\forall x \in \mathbb{N}$, $a < x$. True

(c) $\forall x \in \mathbb{R} \exists y \in \mathbb{R}$ such that $xy = 1$. False

(d) $\forall a \in \mathbb{R}$, $\sqrt{a^2} = a$. False

(e) $\forall a \in [0, \infty)$, $\exists x \in \mathbb{R}$ such that $x^2 = a$ and $-x^2 = a$. False
3 (2.5 points). Prove the following:
Suppose \(a \) is an integer. If \(a^2 \) is an odd integer, then \(a \) is odd.

By contrapositive.

Suppose \(a \) is even. Say \(a = 2n \) where \(n \in \mathbb{Z} \). Then \(a^2 = 4n^2 = 2 \cdot 2n^2 \).
So with \(m = 2n^2 \), we have \(m \in \mathbb{Z} \) and \(a^2 = 2 \cdot m \) showing that \(a^2 \) is even.
4 (2.5 points). Prove that the sum of a rational number and an irrational number is irrational.

By contradiction.
We assume a is rational, b is irrational, and $a+b$ is rational.
We can then take integers $m,n,p,q \in \mathbb{Z}$ with $n,q \neq 0$ such that

$$a = \frac{m}{n} \quad \text{and} \quad a+b = \frac{p}{q}.$$

But then $b = a+b-a = \frac{np-mq}{nq}.$

Now $np-mq, nq \in \mathbb{Z}$ and $nq \neq 0,$
so b is rational. This contradicts b is irrational.
5 (2.5 points). Prove the following:

\[1 + 3 + 5 + \cdots + (2n - 1) = n^2 \quad \forall n \in \mathbb{N}. \]

By induction on \(n \).

Base case \(n = 1 \)

\[1 = 1^2 \]

Inductive step. We assume

\[1 + 3 + 5 + \cdots + (2k - 1) = k^2 \quad \text{\(\Box \)} \]

and prove

\[1 + 3 + 5 + \cdots + (2(k+1) - 1) = (k+1)^2. \]

We have

\[
\begin{align*}
& 1 + 3 + 5 + \cdots + (2k+1) - 1 \\
= & 1 + 3 + 5 + \cdots + (2k-1) + (2k+1) \\
= & k^2 + (2k+1) \quad \text{by \(\Box \)} \\
= & (k+1)^2.
\end{align*}
\]
6 (2.5 points). Prove the following:
Suppose \(a, b, c \in \mathbb{Z} \) and \(a \neq 0 \). If \(a \mid b \) and \(a \mid c \), then \(a \mid (sb + tc) \) for any integers \(s \) and \(t \).

We take integers \(m \) and \(n \) such that
\[
b = m \cdot a \quad \text{and} \quad c = n \cdot a. \]

For integers \(s \) and \(t \) we set
\[
d = sm + tn \quad \text{so that} \quad d \in \mathbb{Z}
\]

and
\[
sb + tc = sma + tna \\
= (sm + tn) \cdot a \\
= da.
\]

Thus \(sb + tc \) is a multiple of \(a \), so \(a \mid sb + tc \).
7 (2.5 points). Use the Euclidean Algorithm to find the greatest common divisor of 1012 and 295. Express the greatest common divisor as an integer linear combination of 1012 and 295.

\[1012 = 3 \cdot 295 + 127\]
\[295 = 2 \cdot 127 + 41\]
\[127 = 3 \cdot 41 + 4\]
\[41 = 10 \cdot 4 + 1\]
\[4 = 4 \cdot 1 + 0\]

Thus, \(\gcd(1012, 295) = 1 \) and

\[1 = 41 - 10 \cdot 4\]
\[= 41 - 10(127 - 3 \cdot 41)\]
\[= 31 \cdot 41 - 10 \cdot 127\]
\[= 31(295 - 2 \cdot 127) - 10 \cdot 127\]
\[= 31 \cdot 295 - 72 \cdot 127\]
\[= 31 \cdot 295 - 72(1012 - 3 \cdot 295)\]
\[= 31 \cdot 295 - 72 \cdot 1012 + 216 \cdot 295\]
\[= -72 \cdot 1012 + 247 \cdot 295\]