Problem I.

i) Show that in the finite complement topology on \(\mathbb{R} \), every subset of \(\mathbb{R} \) is compact.

ii) Show that a subset \(C \subset \mathbb{R}^n \) is compact if and only if every function \(f: C \to \mathbb{R} \) is bounded.

Problem II.

i) Let \(\tau_1 \) and \(\tau_2 \) be two topologies on the same space \(X \). Suppose that \(\tau_2 \) is finer than \(\tau_1 \). If \((X, \tau_1) \) is compact, does it follow that \((X, \tau_2) \) is compact? Conversely, if \((X, \tau_2) \) is compact, does it follow that \((X, \tau_1) \) is compact?

ii) Let \(Y \subset X \) be equipped with the subspace topology. Show that \(Y \) is compact in the subspace topology if and only if any cover of \(Y \) with open sets in \(X \) possesses a finite subcover of \(Y \).

Problem III.

i) Does the conclusion of Lebesgue lemma hold true if the underlying space \(X = \mathbb{R}^2 \) is the plane? Justify your answer!

ii) Let \((X, d_1) \) be a compact metric space and \((Y, d_2) \) a metric space. Suppose that \(f: X \to Y \) is continuous. Use Lebesgue lemma to show that for every \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if \(d_1(x, y) < \delta \) then \(d_2(f(x), f(y)) < \epsilon \), that is, \(f \) is uniformly continuous.