Math 251 - 30164 - Differential Calculus
Syllabus - OSU - Winter 2012

Instructor: Filix Maisch
e-mail: maischf@math.oregonstate.edu
Meetings: MWF 11 - 11:50 AM
phone: 541-737-7127
Room: Owen 102
office: Kidder 332 and ILLC first floor lobby.

off. hrs:
(1) MW 12:15 - 12:45 PM in Kidder 332
(2) MW 3:15 - 3:45 PM in ILLC (first floor lobby)
(3) Fri 12 - 12:50 PM in the MLC (Kidder 108H, starting the second week)

I am also available by appointment on Tuesday afternoons.

mlc hrs: Fri 12 - 12:50 PM (starting the second week)

Text: Calculus, Briggs, Cochran
Web: people.oregonstate.edu/~maischf/

Attendance: Regular attendance will be expected, but roll will not be taken.

Honor Code: Students are expected to be familiar with Oregon State University’s Statement of Expectations for Student Conduct. Please review this statement at the following web link:
http://oregonstate.edu/admin/stucon/achon.htm

Accommodations: Accommodations are collaborative efforts between students, faculty and Disability Access Services (DAS). Students with accommodations approved through DAS are responsible for contacting the faculty member in charge of the course prior to or during the first week of the term. Students who believe they are eligible for accommodations should contact DAS immediately at 737-4098.

Course Description: Differential calculus for engineers and scientists. Rates of change: the derivative, velocity, and acceleration. The algebraic rules of differential calculus and derivatives of polynomial, rational, and trigonometric functions. Maximum-minimum problems, curve sketching, and other applications. Antiderivatives and simple motion problems.

Schedule: See web for tentative term schedule.

Evaluation: Your grade is determined by online homework, recitation labs, in-class true-false discussion quizzes, two in-class midterms and a final. Your final percentage (if higher) can replace the worse of your two midterms. Here is the point breakdown:

• Homework - 90 (Multiply your average homework percentage by 90 and round up.)
• Labs - 80 (Top eight of nine recitation labs worth 10 points each.)
• Quizzes - 30 (Top three of four unannounced true-false quizzes worth 10 points each.)
• Midterms - 100 each (Feb. 3, March 2)
• Final - 200 (March 22 at 4 PM, location: TBD)

Grades will not be harder than:
540 - 600 A/A-, 480 - 539 B+/B-, 420 - 479 C+/C, 360 - 419 D, 0 - 359 F.

I do not use blackboard. I encourage you to come to my office hours if you do not know how many points you have accumulated. At the end of this syllabus you have a page on which you can record your scores.
Homework: Homework is online. See the instructions on the web, where there is also a list of suggested exercises from the text.

Course ID: maisch18706 Course Name: Math251MWF11AM

Resources: The Math Learning Center is in Kidder 108H and is a great place to drop in for help. It is open from 9 AM to 4 PM, Monday through Friday, from the second week onward. I will be in there on Fridays.

Quizzes/Tests: No resources are allowed on the in-class unannounced true-false quizzes. You are allowed one 3x5 inch handwritten notecard for each midterm and one 4x6 inch handwritten notecard for the final exam.

Labs: Labs can be found on the web. They are contained at the end of the study guide. It is your responsibility to print them. Starting the second week you should work on one lab per week in numerical order. It is intended that you at least begin work on your lab during your recitation section. Your TA will decide on the specific due dates and late policies.

Bacc Core: This course counts toward Baccalaureate Core in the Skills category of Mathematics. The following are the student learning outcomes for this category:

1. Identify situations that can be modeled mathematically.
2. Calculate and/or estimate the relevant variables and relations in a mathematical setting.
3. Critique the applicability of a mathematical approach or the validity of a mathematical conclusion.

Specific Learning Outcomes:

1. Calculate average and instantaneous rates of change and identify instantaneous rates of change with derivatives.
2. Apply ideas of differential calculus to motion problems (velocity, speed, and acceleration)
3. Apply the algebraic limit laws and the standard rules of differentiation including the chain rule to calculate particular limits and derivatives.
4. Use methods of calculus to solve maximum and minimum problems.
5. Use methods of calculus to determine the shapes of curves.
Write down your scores!

(1) Lab 1 :out of 10
(2) Lab 2 :out of 10
(3) Lab 3 :out of 10
(4) Midterm 1 :out of 100
(5) Lab 4 :out of 10
(6) Lab 5 :out of 10
(7) Lab 6 :out of 10
(8) Midterm 2 :out of 100
(9) Lab 7 :out of 10
(10) Lab 8 :out of 10
(11) Lab 9 :out of 10
(12) Homework:out of 90
(13) Quiz 1:out of 10
(14) Quiz 2:out of 10
(15) Quiz 3:out of 10
(16) Quiz 4:out of 10
(17) Final:out of 200