Math 251 The Chain Rule and Implicit Differentiation Activity 5 - Part I

This activity comes in TWO PARTS (the second of which is only released in recitation) and is worth 2% of course credit and graded out of “10” points (5 points for completion, 5 points for correctness on a randomly chosen subset of the exercises). See tentative calendar on the syllabus for due dates. Late activities are accepted up to a day late with a 50% penalty.

Whenever a box is provided, put your final answer for that part of the exercise in the box.

(1) Suppose \(f(x) \) and \(g(x) \) are differentiable functions. Given that \(y = 2x - 3 \) is the equation of the tangent line to \(y = f(x) \) at \(x = 2 \) and \(y = -x + 3 \) is the equation of the tangent line to \(y = g(x) \) at \(x = 1 \), find the equation to the tangent line to \(y = f(g(x)) \) at \(x = 1 \) or justify that there isn’t enough information to determine it.

(2) Derive a formula for \(\frac{d^2}{dx^2} (f(g(x))) \) by using the Chain Rule and the Product Rule.
The amount of Vitamin D an individual produces varies depending on their age, regional conditions, skin pigmentation and exposure to sunlight. UV radiation in sunlight is necessary to produce the active form of Vitamin D which the body then uses to absorb calcium from the diet. Using the equation $D(t) = 33 - 15 \cos \left(\frac{\pi(t-1)}{6} \right)$ to represent the hypothetical average concentration of Vitamin D in a Corvallis resident throughout the year (t is months into the year), answer the following questions.

(a) When do you think blood Vitamin D levels will be highest? Lowest? When do you think they will be increasing the most rapidly? Decreasing most rapidly?

(b) Find $D'(t)$.

(c) What does the first derivative tell us about Vitamin D concentration?

(d) When is the first derivative positive? When is it be negative?
(4) Consider the curve given by $\sqrt{y} + xy = 1$.

(a) Use implicit differentiation to find $\frac{dy}{dx}$.

(b) Find the equation of the tangent line to the curve at the point on the curve where $y = 1/4$.
(5) Find \(\frac{dy}{dx} \) where \(3(x^2 + y^2)^2 = 25(x^2 - y^2) \).

(6) Find \(\frac{d^2 y}{dx^2} \) where \(x^2 + y^2 = 1 \).
(7) Suppose brain weight B (in grams) as a function of body weight W (in grams) in fish can be modeled by $B = 0.007W^{2/3}$. Another model for body weight as a function of body length L (in cm) is $W = 0.12L^{5/2}$. Find $\frac{dB}{dL}$ as a function of L and interpret its meaning.