Math 252H - 23577 - Integral Calculus (4)

Syllabus - OSU - Fall 2017

Instructor: Filix Maisch e-mail: maischf@math.oregonstate.edu
Meetings: MWF 10 - 11 : 20 AM Room: KIDD 236
office: KIDD 348 Off. hrs: MWF 2 : 00 - 2 : 50 PM and by appt. (Friday in the MLC)
Text: Calculus, Early Transcendentals, Briggs, Cochran, et al. (2nd edition)
Web: people.oregonstate.edu/~maischf/

Enforced Prerequisites: Math 251 or 251H with a C- or better or instructor permission
(and Honors College approval).

Attendance: Regular attendance to lecture and recitation is expected.

Honor Code: Students are expected to be familiar with Oregon State University’s Student
Conduct Code. Please review this statement at the following web link:
http://studentlife.oregonstate.edu/studentconduct/university-policies

Accommodations: Accommodations for students with disabilities are determined and approved
by Disability Access Services (DAS). If you, as a student, believe you are eligible
for accommodations but have not obtained approval please contact DAS immediately at
541-737-4098 or at http://ds.oregonstate.edu. DAS notifies students and faculty members of
approved academic accommodations and coordinates implementation of those accommoda-
tions. While not required, students and faculty members are encouraged to discuss details
of the implementation of individual accommodations.

Course Description: This course covers definite and indefinite integrals, basic techniques
of integration, the calculus of logarithmic and exponential functions, polar coordinates, and
applications of integration to areas, volumes, force, work, and growth and decay problems.

Schedule: See web for tentative term schedule.

Evaluation: Your grade is determined by online homework, group work, a midterm, and a
final. Here is the point breakdown:

- Homework 50 (Take your avg. homework percentage of 50 and round up.)
- Group Work 50 (Top 5 of 7 group work activities worth 10 points each.)
- Midterm 120 (Oct. 30th, in-class)
- Final 180 (Dec. 5th, 9 : 30 – 11 : 20 AM)

Grades will not be harder than:

360 - 400 A/A-, 320 - 359 B+/B/B-, 280 - 319 C+/C, 240 - 279 D, 0 - 239 F.

I DO NOT USE CANVAS. At the end of this syllabus you have a page on which you
can record your scores.
Homework: Homework is online through www.mymathlab.com. On the web page there is also a list of suggested exercises from the text for extra practice and for studying for exams. Usually you get 3 attempts for credit. Late homework can be completed for a 10% penalty.

Course ID: maisch99748
Name: Math252_Fall2017

Resources: The Math Learning Center is in Kidder 108H and is a great place to drop in for help. It is open from 9 AM to 4 PM, Monday through Friday, starting Wednesday, Sept. 27th.

Tests: Note that no calculators of any kind are allowed on the midterm nor the final. You are allowed both sides of one 3x5 inch handwritten note card for the midterm and both sides of one 4x6 inch handwritten note card for the final. The average of your final and midterm can replace the midterm if it helps. Tests are not allowed to be made-up unless the circumstances are truly exceptional and contact requesting the accommodation is made PRIOR to the test.

Recitation Group Work: Most weeks during the Monday’s meeting you will be asked to complete a group-work activity worth 10 points in groups of 2 – 4, due at the start of the following week’s Friday. See the term calendar. Every group member individually is required to submit an activity. It is your responsibility to print the activities from the course web page and to bring them to class. The lowest two (of 7) activity scores will be dropped. Be aware that only a random subset of each activity will be graded for credit.

Specific Learning Outcomes: A successful student in Math 252 will be able to...

1. Describe the definite integral as a limit of Riemann sums and illustrate and interpret definite integrals as areas and signed areas.
2. Apply the Fundamental Theorem of Calculus to evaluate integrals and to differentiate integrals with respect to a limit of integration.
3. Use integration in applications, such as to find areas and volumes of regions and to calculate physical quantities such as total distance traveled, displacement, work, and center of mass.
4. Evaluate integrals using basic numerical integration rules.
5. Use first order differential equations to model and solve problems of growth and decay, cooling, and mixing.
Write down your scores!

(1) Group Worksheet 1 :out of 10

(2) Group Worksheet 2 :out of 10

(3) Group Worksheet 3 :out of 10

(4) Group Worksheet 4 :out of 10

(5) Midterm :out of 120

(6) Group Worksheet 5 :out of 10

(7) Group Worksheet 6 :out of 10

(8) Group Worksheet 7 :out of 10

(9) Best 5 of 7 Group Worksheets:out of 50

(10) Homework:out of 50

(11) Final:out of 180