(1) Let R be a ring with unity.

 (a) Show that the set of units $R^X = \{ r \in R | \exists r^{-1} \in R, rr^{-1} = r^{-1}r = 1 \}$ in R forms a group (under multiplication).

 (b) Show that the group of units in \mathbb{Z}_{10} is a cyclic group of order 4 (thus isomorphic to \mathbb{Z}_4).

(2) Let R be a ring. $a \in R$ is an idempotent if $a^2 = a$.

 (a) Show that the set of idempotents in a commutative ring is closed under multiplication.

 (b) Determine the set of idempotents in $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.

(3) Find the following remainders:

 (a) 3^{47} when divided by 23

 (b) 11^{1202} when divided by 36

(4) Let R be an integral domain.

 (a) Show that R must be of characteristic 0 or $p \in \mathbb{N}$ where p is a prime.

 Recall: For a nontrivial ring R where every element is of finite (additive) order, the ring R is of characteristic n if n is the least positive integer such that $r + r + \cdots + r = n \cdot r = 0$ for all $r \in R$. If there is an element of R that is not of finite (additive) order, then R is of characteristic 0.

 (b) Show that $\deg(fg) = \deg(f) + \deg(g)$ for all non-zero polynomials $f, g \in R[X]$. Show by example that this isn’t the case in $\mathbb{Z}_6[X]$ (even when the product is non-zero).

(5) Suppose R is a ring with unity, S is an integral domain and $\phi : R \to S$ is a ring homomorphism such that $\phi(R) \neq \{0\}$. Show that $\phi(1)$ is the unity element in S.