Field Theory Basics

Let R be a ring. M is called a maximal ideal of R if M is a proper ideal of R and there is no proper ideal of R that properly contains M.

Lemma 14.1: Let R, S be rings and I be an ideal in S. Let $\phi : R \to S$ be a homomorphism. Then the pre-image $\phi^{-1}(I) = \{ r \in R | \phi(r) \in I \}$ is an ideal in R.

Proof: $\phi^{-1}(I) = \{ r \in R | \phi(r) \in I \} \subseteq R$ isn’t empty since $0 \in I$ and $\phi(0) = 0$ implies $0 \in \phi^{-1}(I)$. Let $a, b \in \phi^{-1}(I)$. Then $\phi(a), \phi(b) \in I$. Then $\phi(a - b) = \phi(a) + \phi(-b) = \phi(a) - \phi(b) \in I$ since I is an additive subgroup of S. Thus $\phi^{-1}(I)$ is an additive subgroup of R by the 1-step subgroup test. Let $r \in R$. $\phi(ar) = \phi(a)\phi(r) \in I$ since $\phi(a) \in I, \phi(r) \in S$, and I is an ideal. Similarly, $\phi(ra) \in I$. Thus $ra, ar \in \phi^{-1}(I)$. So $\phi^{-1}(I)$ is an ideal of R. □

Proposition 14.2: Let R be a commutative ring with unity. M is a maximal ideal of R iff R/M is a field.

Proof: Suppose M is a maximal ideal of R. Since $M \neq R$ it follows that $1 \notin M$ (otherwise $r = r(1) \in M$ for all $r \in R$ implies $M = R$). So R/M is a non-trivial commutative ring with unity $1 + M$. Let $r + M \in R/M$ be non-zero. So $r \notin M$.

Suppose $r + M$ does not have a multiplicative inverse in R/M. Then the set

$$(R/M)(r + M) = \{(a + M)(r + M) | a + M \in R/M\}$$

contains $r + M$, but does not contain $1 + M$.

That makes $(R/M)(r + M)$ a proper and nontrivial subset of R/M. It’s very easy (ELFY) to show that $(R/M)(r + M)$ is an ideal of R/M.

Let $\phi : R \to R/M$ be given by $\phi(r) = r + M$. Clearly ϕ is an onto homomorphism (epimorphism). Set $I = \phi^{-1}((R/M)(r + M)) = \{ s \in R | \phi(s) \in (R/M)(r + M) \}$. Then by the lemma above I is an ideal in R containing M and $r \notin M$, but $I \neq R$ since I does not contain 1. That is a contradiction since M is maximal. Hence $r + M$ has a multiplicative inverse. Thus R/M is a field.

Conversely, assume $M \neq R$ is an ideal and R/M is a field.

Let N be an ideal of R such that M is properly contained in N. Then there exists $r \in N$ such that $r \notin M$. Then $r + M \neq 0 + M$ in R/M. Since R/M is a field, $r + M$ has a multiplicative inverse $s + M \in R/M$ such that $(r + M)(s + M) = (s + M)(r + M) = sr + M = 1 + M$. Then $sr - 1 \in M$. Then $sr - 1 \in N$. Then $1 = sr \in N$ since $r \in N$ and N is an ideal. Thus $x = x(1) \in N$ for all $x \in R$. Thus $R = N$ showing that M is a maximal ideal. □
Let R be a ring. An ideal P of R is a prime ideal if P is a proper ideal of R and for all $a, b \in R$ we have that $ab \in P$ implies $a \in P$ or $b \in P$.

Proposition 14.3: Let R be a commutative ring with unity. P is a prime ideal of R iff R/P is an integral domain.

Proof: Assume P is a prime ideal of R. Let $a + P, b + P \in R/P$. Suppose $(a + P)(b + P) = 0 + P = P$. Well this means that $ab + P = P$ and hence $ab \in P$. But then $a \in P$ or $b \in P$ since P is a prime ideal. But that makes $a + P = 0 + P = P$ or $b + P = 0 + P = P$. Thus R/P is an integral domain.

Conversely, assume P is an ideal of R and R/P is an integral domain. Suppose $a, b \in R$ and $ab \in P$. Then $ab + P = 0 + P = P$. But that implies that $(a + P)(b + P) = 0 + P = P$. Therefore either $a + P = 0 + P = P$ or $b + P = 0 + P = P$. So either $a \in P$ or $b \in P$, which shows that P is a prime ideal □

Putting together the last two propositions we get the following elegant result:

Corollary 14.4: Let R be a commutative ring with unity. All maximal ideals of R are prime ideals of R.

Proof: Assume M is a maximal ideal of R. Then R/M is a field. A field is an integral domain, so R/M is an integral domain. Thus M is a a prime ideal □

Proposition 14.5: Let F be a field. An ideal $(f) \neq (0)$ in $F[x]$ is maximal if and only if f is irreducible over F.

Proof: Assume $(f) \neq (0)$ is a maximal ideal in $F[X]$. Then $(f) \neq F[X]$ and thus $\deg(f) \geq 1$. Suppose $f = gh$ is a factorization of $f(x)$ where $g, h \in F[X]$. Since (f) is also a prime ideal we get that either $g \in (f)$ or $h \in (f)$.

But then it is not possible that both g, h are of degree less than $\deg(f)$. Hence f is irreducible over F.

Conversely, assume $f \in F[X]$ is irreducible over F. In particular, $(f) \neq F[X]$ is an ideal of $F[X]$. Suppose M is an ideal of $F[X]$ and $(f) \subseteq M \subseteq F[X]$.

Since $F[X]$ is a PID we have that $M = (g)$ where $g \in F[X]$. Since $f \in (g)$ we get $f = gh$ for some $h \in F[X]$. But f is irreducible over F, so we get that either g or h is of degree 0. If g is of degree 0 then $M = (g) = F[X]$ (see proof of proposition 13.4). If h is of degree 0 then $h \in F$ is invertible and hence $g = h^{-1}f \in (f)$ implies $M = (f)$. Thus (f) is a maximal ideal of $F[X]$ □
Extension Fields

Let E, F be fields. We call E an extension field of F if $E \supseteq F$ (that is, F is a subfield of E). In particular, this makes E (using the field operations in E) a vector space over the field F by the standard vector space axioms.

Proposition 15.1 (Kronecker’s Theorem): Let F be a field and $f(x)$ be a non-constant polynomial in $F[X]$. Then there exists an extension field E of F and $\alpha \in E$ such that $f(\alpha) = 0$.

Proof: Since we can factor $f(x)$ into a product of irreducible polynomials in $F[X]$ it suffices to show that for an arbitrary irreducible $p(x) \in F[X]$ we can find an extension field E of F and $\alpha \in E$ such that $p(\alpha) = 0$.

So let $p(x) = a_0 + a_1x + \cdots + a_nx^n \in F[X]$ be irreducible. Then $(p(x))$ is a maximal ideal of $F[X]$, which makes $F[X]/(p(x))$ a field. Consider the canonical map $\psi : F \to F[X]/(p(x))$ given by $\psi(a) = a + (p(x))$. Clearly ψ is a field homomorphism.

Let’s show that ψ is 1−1. Let $a, b \in F$ and suppose $\psi(a) = \psi(b)$. Then $a + (p(x)) = b + (p(x))$. This implies that $a − b \in (p(x))$. So $a − b = p(x)q(x)$ for some $q(x) \in F[X]$. But the degree of $a − b$ is less than 1 and the degree of $p(x)$ is at least 1. The only way to reconcile this is for $q(x) = 0$. Thus $a = b$ showing that ψ is 1−1.

Then $F \cong \psi(F)$. So we can identify F with the subfield $\psi(F) = \{a + (p(x))|a \in F\}$ of $F[X]/(p(x))$. So we shall view $E = F[X]/(p(x))$ as extension field of $F \cong \psi(F)$ (as it is an extension field of $\psi(F)$).

With this in mind when we write $a \in F$, we can view it as the same as writing $a + (p(x)) \in E$. In particular, this means we can view $p(x)$ as an element of $E[X]$.

Let’s find a zero for $p(x)$ in the extension field E. Let $\alpha = x + (p(x)) \in E$.

Consider that in E we have

$$p(\alpha) = a_0 + a_1(\alpha) + \cdots + a_n(\alpha)^n = a_0 + a_1(x + (p(x))) + \cdots + a_n(x + (p(x)))^n =$$

$$= a_0 + a_1x + \cdots + a_nx^n + (p(x)) = p(x) + (p(x)) = (p(x)) = 0.$$

So we have found an extension field $E = F[X]/(p(x))$ of $F \cong \psi(F)$ and $\alpha \in E$ such that $p(\alpha) = 0$ □

Let’s see this theorem in action! Consider the polynomial $f(x) = x^2 + 1$ in $\mathbb{R}[X]$. We know that $f(x)$ is irreducible over \mathbb{R}. So $(x^2 + 1)$ is a maximal ideal in $\mathbb{R}[X]$ and thus $\mathbb{R}[X]/(x^2 + 1)$ is an extension field of \mathbb{R} (where we identify \mathbb{R} with $\{a + (x^2 + 1)|a \in \mathbb{R}\} \subseteq \mathbb{R}[X]/(x^2 + 1)$).

Let $\alpha = x + (x^2 + 1) \in \mathbb{R}[X]/(x^2 + 1)$. Then

$$\alpha^2 + 1 = [x + (x^2 + 1)]^2 + [1 + (x^2 + 1)] = x^2 + 1 + (x^2 + 1) = (x^2 + 1) = 0$$

in $\mathbb{R}[X]/(x^2 + 1)$.
Let E be an extension field of F. An element $\alpha \in E$ is algebraic over F if there exists a non-constant polynomial $f \in F[x]$ such that $f(\alpha) = 0$. Otherwise, α is transcendental over F. If $\alpha \in E$ is algebraic over F then the degree of α over F is the degree of a polynomial $f \in F[X]$ of minimal degree such that $f(\alpha) = 0$.

ELFY: Let E be an extension field of F. Show that if $\alpha \in E$ is algebraic of degree n over F and $f \in F[X]$ is of degree n with $f(\alpha) = 0$ then f is irreducible.

Consider that \mathbb{R} is an extension field of \mathbb{Q}. Then we have that $\sqrt{2}$ is algebraic over \mathbb{Q} since for $f(x) = x^2 - 2 \in \mathbb{Q}[X]$ we have $f(\sqrt{2}) = 0$. Furthermore, the degree of $\sqrt{2}$ over \mathbb{Q} is 2 since $\sqrt{2}$ isn’t the root of a degree one polynomial in $\mathbb{Q}[X]$.

It is well-known (although very difficult to prove, and we won’t) that the real numbers π and e are transcendental over \mathbb{Q}.

ELFY: Show that $\sqrt{1 + \sqrt{2}}$ is algebraic over \mathbb{Q}.

Let E be an extension field of a field F. Let $\alpha_1, \alpha_2, ..., \alpha_k \in E$. We denote by $F(\alpha_1, \alpha_2, ..., \alpha_k)$ the subfield of E which is the smallest field extension of F that contains $\alpha_1, \alpha_2, ..., \alpha_k$.

A field extension E of F is called a simple extension if $E = F(\alpha)$ for some $\alpha \in E$.

Example: $\mathbb{R}(i) = \mathbb{C}$ since once we have an extension of \mathbb{R} that contains i, it must contain $a + bi$ for any $a, b \in \mathbb{R}$. So \mathbb{C} is a simple extension of \mathbb{R}.

Proposition 15.2: Let E be an extension field of F. Let $\alpha \in E$ be algebraic of degree n over F. Then

$$F(\alpha) = \{a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}|a_0, a_1, ... , a_{n-1} \in F\}.$$

Moreover, every element in $F(\alpha)$ is uniquely expressed in the form $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}$ where $a_0, a_1, ... , a_{n-1} \in F$.

Proof: Let $p(x) \in F[X]$ be an irreducible polynomial satisfying $\text{deg}(p) = n$ and $p(\alpha) = 0$. WLOG assume that $p(x) = x^n - b_{n-1}x^{n-1} + \cdots - b_1x - b_0$ where $b_0, b_1, ..., b_{n-1} \in F$. Then we have that

$$\alpha^n = b_{n-1}\alpha^{n-1} + \cdots + b_1\alpha + b_0.$$

Obviously $K = \{c_0 + c_1\alpha + \cdots + c_m\alpha^m|m \in \{0, 1, ... \} \text{ and } c_0, c_1, ..., c_m \in F\} \subseteq F(\alpha)$.

By using that $\alpha^n = b_{n-1}\alpha^{n-1} + \cdots + b_1\alpha + b_0$ (as many times as needed) we have that

$$\{c_0 + c_1\alpha + \cdots + c_m\alpha^m|m \in \{0, 1, ... \} \text{ and } c_0, c_1, ..., c_m \in F\} = \{a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}|a_0, a_1, ..., a_{n-1} \in F\}.$$

This means that to show that $F(\alpha) = \{a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1}|a_0, a_1, ..., a_{n-1} \in F\}$ it just suffices to show that $K = \{c_0 + c_1\alpha + \cdots + c_m\alpha^m|m \in \{0, 1, ... \} \text{ and } c_0, c_1, ..., c_m \in F\}$ is a field.
Let \(\phi_\alpha : F[X] \to K \) be given by \(\phi_\alpha(f(x)) = f(\alpha) \). This is obviously an onto ring homomorphism (called an evaluation homomorphism). We have that \(\ker(\phi_\alpha) = (p(x)) \). Well, by the first isomorphism theorem \(F[X]/(p(x)) \cong K \) is a field as \((p(x))\) is a maximal ideal.

Now we prove uniqueness. Suppose
\[
a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1} = b_0 + b_1 \alpha + \cdots + b_{n-1} \alpha^{n-1}
\]
where \(a_0, a_1, \ldots, a_{n-1}, b_0, b_1, \ldots, b_{n-1} \in F \).

Then \((a_0 - b_0) + (a_1 - b_1) \alpha + \cdots + (a_{n-1} - b_{n-1}) \alpha^{n-1} = 0\). Hence
\[
f(x) = (a_0 - b_0) + (a_1 - b_1)x + \cdots + (a_{n-1} - b_{n-1})x^{n-1} \in \ker(\phi_\alpha) = (p(x)).
\]
So \(f(x) = p(x)q(x) \) for some \(q(x) \in F[X] \). Since the degree of \(f(x) \) is less than the degree of \(p(x) \) it follows that \(q(x) = 0 \) and thus \(f(x) = 0 \). Hence \(a_i = b_i \) for all \(i \in \{0, 1, \ldots, n-1\} \). \(\square \)

This proposition tells us something interesting: For a field extension \(E \) of \(F \) and an element \(\alpha \in E \) that is algebraic of degree \(n \) over \(F \) we get that the simple extension field \(F(\alpha) \) is a vector space of dimension \(n \) over the field \(F \) with basis \(\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\} \). We say that the degree of the simple extension \(F(\alpha) \) over \(F \) is that dimension \(n \).

In this new language, we can say that \(\mathbb{C} \) is a degree-2 simple extension of \(\mathbb{R} \).

Example making use of vector space concepts: Consider \(F = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \) (smallest subfield of \(\mathbb{R} \) containing \(\sqrt{2} \) and \(\sqrt{3} \)) as an extension field of \(\mathbb{Q} \). Let’s show that \(1, \sqrt{2}, \sqrt{3}, \sqrt{6} \in F \) are linearly independent over \(\mathbb{Q} \):

First we note (ELFY) \(\sqrt{2}, \sqrt{3}, \sqrt{6} \notin \mathbb{Q} \) and the product of a non-zero rational and an irrational is irrational.

It’s clear that \(\sqrt{2}, \sqrt{3}, \sqrt{6} \in F \). Suppose \(a, b, c, d \in \mathbb{Q} \) and \(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0 \).

Then \(-a - d\sqrt{6} = b\sqrt{2} + c\sqrt{3} \). Squaring both sides gives \(a^2 + 2ad\sqrt{6} + 6d^2 = 2b^2 + 2bc\sqrt{6} + 3c^2 \). Then \((2ad - 2bc)\sqrt{6} \in \mathbb{Q} \) implies \(ad = bc \) since \(\sqrt{6} \notin \mathbb{Q} \) and the product of a non-zero rational and an irrational is irrational. Notice that \(ad \) is zero iff \(b \) or \(c \) is zero.

This gives three cases worth examining:

Case 1: \(a = 0 \). In this case \(b = 0 \) or \(c = 0 \). Suppose \(b = 0 \). Then \(c\sqrt{3} + d\sqrt{6} = 0 \) This implies that \(c\sqrt{3} = -d\sqrt{6} \). Dividing both sides by \(\sqrt{3} \) gives \(3c = -d\sqrt{2} \) which implies \(d = 0 \) since \(\sqrt{2} \notin \mathbb{Q} \) and the product of a non-zero rational and an irrational is irrational. Thus \(c = 0 \), showing that the vectors are linearly independent. A similar argument holds when \(c = 0 \).

Case 2: \(d = 0 \). In this case \(b = 0 \) or \(c = 0 \). Suppose \(b = 0 \). Then \(a + c\sqrt{3} = 0 \) implies as above that \(c = 0 \) and then \(a = 0 \), showing that the vectors are linearly independent. A similar argument holds when \(c = 0 \).

Case 3: \(a \neq 0 \) and \(d \neq 0 \). Then \(b \neq 0 \) and \(c \neq 0 \). Then
\[
0 = 2b^2 + 3c^2 - 6d^2 - a^2 = 2b^2d^2 + 3c^2d^2 - 6d^4 - b^2c^2 = (b^2 - 3d^2)(2d^2 - c^2).
\]
We get a contradiction since \(c^2 - 2d^2 \neq 0 \) and \(b^2 - 3d^2 \neq 0 \), as otherwise \(c = \pm \sqrt{2}d \) or \(b = \pm \sqrt{3}d \) is not rational as the product of a non-zero rational and irrational is irrational. This contradiction completes the argument as now it follows that \(a = b = c = d = 0 \) making 1, \(\sqrt{2}, \sqrt{3}, \sqrt{6} \) linearly independent over \(\mathbb{Q} \).

In general, whenever \(E \) is a field extension of \(F \), and \(E \) has finite dimension \(n \) as a vector space over \(F \), then the degree of \(E \) over \(F \) is \(n \) and we use the notation \([E : F] = n \).

ELFY: Let \(E, F, K \) be fields. Show that if \(K \) is a field extension of finite degree over \(E \) and \(E \) is a field extension of finite degree over \(F \) then \([K : F] = [K : E][E : F] \). Hint: Play with bases.

A field \(F \) is algebraically closed if every non-constant polynomial \(f(x) \in F[x] \) has a zero in \(F \). Clearly the fields \(\mathbb{Q} \) and \(\mathbb{R} \) are not algebraically closed, as we have seen.

We just state the following theorem since it is fundamental to this subject, however we don’t give a proof. It has a very simple proof using complex analysis (not given here) and some very difficult proofs using just algebra (also not given here).

Proposition 15.3 (The Fundamental Theorem of Algebra): Every non-constant polynomial \(f(x) \in \mathbb{C}[X] \) has a zero in \(\mathbb{C} \). In other words, \(\mathbb{C} \) is algebraically closed.

Here is another important theorem we just state without proof to save the time:

Proposition 15.4: Every field \(F \) has an algebraic closure \(\bar{F} \), which is an extension field of \(F \) that is algebraically closed.
Finite Fields

The primary goal of this section will be to show that there exists a finite field of order \(p^n \) where \(p \in \mathbb{N} \) is a prime and \(n \in \mathbb{N} \). We already know that there is (up to isomorphism) exactly one field with \(p \in \mathbb{N} \) elements where \(p \) is a prime, namely \(\mathbb{Z}_p \). We will now denote these fields by \(\mathbb{F}_p \) instead of \(\mathbb{Z}_p \).

Proposition 16.1: Let \(F \) be a finite field with \(q \) elements. Let \(E \) be a field extension of \(F \) of degree \(n \). Then \(E \) has \(q^n \) elements.

Proof: Let \(\{ \alpha_1, \alpha_2, \ldots, \alpha_n \} \) be a basis for \(E \) as a vector space over \(F \). Then every element \(\beta \in E \) can be written uniquely in the form

\[
\beta = b_1 \alpha_1 + b_2 \alpha_2 + \cdots + b_n \alpha_n.
\]

Thus this turns into a simple counting problem: How many such expressions above are there? Well, there are \(q \) choices for the field element from \(F \) chosen as the scalar on \(\alpha_i \) for \(i = 1, 2, \ldots, n \) so by the multiplication principle there are \(q^n \) elements in \(E \). □

Corollary 16.2: Let \(E \) be a finite field of characteristic \(p \in \mathbb{N} \) where \(p \) is a prime. Then \(E \) contains \(p^n \) elements where \(n \in \mathbb{N} \).

Proof: Clearly \(E \) contains \(<1>=\{1,1+1,1+1+1,\ldots\}=\mathbb{F}_p \) as a subfield. Since \(E \) is a finite field, it must be of degree \(n \) over \(F \) for some \(n \in \mathbb{N} \). Then by the previous proposition, \(E \) has \(p^n \) elements. □

Lemma 16.3: Let \(F \) is a finite field with \(q \) elements. Then \(a^q = a \) for all \(a \in F \).

Proof: Clearly \(0^q = 0 \). Since the non-zero elements of \(F \) form a multiplicative group of order \(q-1 \) we have that \(a^{q-1} = 1 \) for all non-zero \(a \in F \), since the order of any group element divides the order of the group. Thus \(a^q = a \) for all \(a \in F \). □

This gives us a beautiful result:

Lemma 16.4: Let \(F \) is a finite field with \(q \) elements. Then \(x^q - x \in F[X] \) factors into

\[
x^q - x = \prod_{a \in F} (x - a).
\]

Proof: Since \(f(x) = x^q - x \) is of degree \(q \) it has at most \(q \) roots in \(F \). By the previous lemma, every element in \(F \) is a root of \(f(x) \), giving \(q \) distinct roots in \(F \). By the Root-Factor Correspondence we get that

\[
f(x) = \prod_{a \in F} (x - a) \quad \Box
\]
Let F be a field. Define the derivative operator $D : F[X] \rightarrow F[X]$ by the rule

$$D(a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \cdots + 2a_2 x + a_1.$$

Let’s justify the “product rule:”

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0$ be in $F[X]$.

Then $f(x)g(x) = \sum_{j=0}^{n} \sum_{k=0}^{m} a_j b_k x^{j+k}$ and thus $D(f(x)g(x)) = \sum_{j=0}^{n} \sum_{k=0}^{m} (j+k) a_j b_k x^{j+k-1}$

$$D(f(x)) = \sum_{j=0}^{n} ja_j x^{j-1} \quad \text{and} \quad D(g(x)) = \sum_{k=0}^{n} kb_k x^{k-1} \quad \text{so}$$

$$D(f(x))g(x) + f(x)D(g(x)) = \sum_{j=0}^{n} \sum_{k=0}^{m} ja_j b_k x^{j+k-1} + \sum_{j=0}^{n} \sum_{k=0}^{m} ka_j b_k x^{j+k-1} = D(f(x)g(x)).$$

Lemma 16.4: Let F be a field and $f(x) \in F[X]$. Then for any $r \in F$, if $f(x) = g(x)(x-r)^2$ for some $g(x) \in F[X]$ then $D(f(x))(r) = 0$.

Proof: Suppose $r \in F$ and $f(x) = g(x)(x-r)^2$ for some $g(x) \in F[X]$. Then we have that $f(x) = g(x)(x^2 - 2rx + r^2)$. By the product rule, $D(f(x)) = D(g(x))(x-r)^2 + 2g(x)(x-r)$. Hence $D(f(x))(r) = 0$. □

Proposition 16.5: Let $p \in \mathbb{N}$ be a prime and $n \in \mathbb{N}$. There exists a field \mathbb{F}_{p^n} with p^n elements.

Proof: Let \bar{F} be the algebraic closure of \mathbb{F}_p. Obviously the characteristic of \bar{F} is still p. Consider that for $q = p^n$ the polynomial $f(x) = x^q - x$ completely factors into linear factors in $\bar{F}[X]$. We see that $D(f(x)) = qx^{q-1} - 1 = -1$ in $\bar{F}[X]$, so $f(x) = x^q - x$ does not have any repeated roots in \bar{F} by the previous lemma.

So $S = \{a \in \bar{F}|a^q - a = 0\}$ has q distinct elements. Let’s show that S is a field:

Clearly $0, 1 \in S$.

For $a, b \in S$ we have that $(a - b)^q = a^q - b^q = a - b \in S$ by using the binomial theorem since $q = p^n$ and the characteristic of \bar{F} is p. So $(S, +)$ is an abelian group (as it is a subgroup of the abelian group $(\bar{F}, +)$).

For non-zero $a, b \in S$ we have that $(ab^{-1})^q = a^qb^{-q} = ab^{-1} \in S$. So (S^*, \cdot) forms a multiplicative group (as it is a subgroup of (\bar{F}^*, \cdot)).

So S is a field with $q = p^n$ elements □
It turns out that (up to isomorphism) S is the unique field with p^n elements, but we will not devote the time required to prove this.

Standard notation: \mathbb{F}_q is the field (up to isomorphism) with $q = p^n$ elements (where $p \in \mathbb{N}$ is prime and $n \in \mathbb{N}$).

Let’s play with \mathbb{F}_9. First, let’s construct this field as a quotient of $\mathbb{F}_3[X]$. Consider the polynomial $f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[X]$. $f(0) = 2$, $f(1) = 2$, and $f(2) = 1$. Hence $f(x)$ is irreducible in $\mathbb{F}_3[X]$. Thus $I = (f(x))$ is a maximal ideal and $\mathbb{F}_3[X]/I$ is a field with 9 elements:

$$\mathbb{F}_9 \cong \{0 + I, 1 + I, 2 + I, x + I, x + 1 + I, x + 2 + I, 2x + I, 2x + 1 + I, 2x + 2 + I\}.$$

ELFY: Make addition and multiplication tables for \mathbb{F}_9.

Let’s take advantage of $x^2 + I = x + 1 + I$:

Consider that $\mathbb{F}_9^* \cong \{1 + I, 2 + I, x + I, x + 1 + I, x + 2 + I, 2x + I, 2x + 1 + I, 2x + 2 + I\}$ and

$$(x + I)^2 = x^2 + I = x + 1 + I,$$

$$(x + I)^3 = x^2 + x + I = 2x + 1 + I,$$

$$(x + I)^4 = 2x^2 + x + I = 2 + I,$$

$$(x + I)^5 = 2x + I,$$

$$(x + I)^6 = 2x^2 + I = 2x + 2 + I,$$

$$(x + I)^7 = 2x^2 + 2x + I = x + 2 + I,$$

and

$$(x + I)^8 = x^2 + 2x + I = 1 + I.$$

So the non-zero elements of this field is generated as a multiplicative group by $x + I$.

Note: A similar construction occurs with $g(x) = x^2 + x + 2$. Why?
Proposition 16.6: Let $q = p^n$ where $p \in \mathbb{N}$ be a prime and $n \in \mathbb{N}$. The multiplicative group \mathbb{F}_q^* is cyclic.

Proof: We may assume $q \geq 4$ as otherwise $q - 1 \leq 3$ (all groups of orders 1, 2, or 3 are cyclic). Set $h = q - 1$ and let

$$h = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$$

be a prime factor decomposition of h.

Let $i \in \{1, 2, \ldots, k\}$. The polynomial $x^{h/p_i} - 1$ has at most h/p_i roots in \mathbb{F}_q. Since $h/p_i < h$ it follows that there are non-zero elements of \mathbb{F}_q which are not roots of $x^{h/p_i} - 1$. Let $a_i \in \mathbb{F}_q^*$ be such a non-root. Set

$$b_i = a_i^{h/(p_i^{n_i})}.$$

Then $b_i^{p_i^{n_i}} = a_i^h = 1$, but $b_i^{p_i^{n_i}-1} = a_i^{h/p_i} \neq 1$.

So on one hand the order of b_i divides $p_i^{n_i}$. On the other hand the order of b_i is greater than $p_i^{n_i-1}$. That means b_i must be of order $p_i^{n_i}$.

Let $b = b_1 b_2 \cdots b_k$. We claim that the order of b is h and thus generates \mathbb{F}_q^* which is hence a cyclic group.

Let’s prove the claim. To yield a contradiction, suppose the order of b is actually less than h, making it a proper divisor of h.

Then the order of b would have to be a divisor of at least one h/p_i where $i \in \{1, 2, \ldots, k\}$. WLOG assume the order of b divides h/p_1.

Then

$$1 = b_1^{h/p_1} b_2^{h/p_1} \cdots b_k^{h/p_1}.$$

For $i = 2, 3, \ldots, k$ we have that $p_i^{n_i}$ divides h/p_1 and thus $b_i^{h/p_1} = 1$. Therefore,

$$1 = b_1^{h/p_1}.$$

So the order of b_1 divides h/p_1, but that contradicts the fact that the order of b_i is $p_i^{n_i}$.

So b generates \mathbb{F}_q^* showing that it is a cyclic group \Box

Generators of \mathbb{F}_q^* are called **primitive elements** of \mathbb{F}_q.

One last bit of fun with finite fields:

Let \(p \in \mathbb{N} \) be prime and \(m, n \in \mathbb{N} \). Consider \(GL_m(\mathbb{F}_q) \), the general linear group of \(m \times m \) matrices over \(\mathbb{F}_q \), where \(q = p^n \). How many elements are there in this finite group?

It’s a pretty neat counting problem: The first column can be any non-zero vector in the vector space \(\mathbb{F}_q^m \). Well, clearly there are \(q^m - 1 \) such vectors. The second column can be any vector not contained in the span of the first column. There are \(q \) vectors in the span of the first column, so that gives \(q^m - q \) such vectors. The third column can be any vector not contained in the span of the first two columns. There are \(q^2 \) vectors in the span of the first two columns, so that gives \(q^m - q^2 \) such vectors.

Continue in this way until we arrive at \(q^m - q^{m-1} \) possible vectors for the last column (requiring they aren’t in the span on the previous \(m - 1 \) columns).

Hence by the multiplication principle, we get

\[
|GL_m(\mathbb{F}_q)| = \prod_{i=0}^{m-1} q^m - q^i.
\]

ELFY: How many elements are there in the group \(GL_2(\mathbb{F}_2) \)? Would it be easy to write them all down? How about \(GL_3(\mathbb{F}_2) \) or \(GL_2(\mathbb{F}_4) \)?