Math 254 Recitation Activity - Fall 2019 - Week 7

Instructions: Please work in groups for these problems. You should write your solutions on a separate piece of paper when appropriate.

A function \(f(x, y) \) has a global maximum (minimum) at \((x_0, y_0)\) if \(f(x_0, y_0) \) is the largest (smallest) value in the range of \(f(x, y) \).

(1) If \(f(x, y) \) is defined on a bounded region \(R \), that contains its boundary (called a “closed” region) and \(f(x, y) \) is continuous on \(R \) then \(f(x, y) \) has a global maximum and minimum on \(R \). To find them, compare the value of \(f(x, y) \) at critical points, that are points within the boundary of \(R \) (called “interior points”), with any potential extreme points on the boundary.

EXAMPLE: Consider \(f(x, y) = e^{4x+y^2-x^2} \) on the region \(x^2 + y^2 \leq 9 \).

\[
 f_x = 2(2 - x)e^{4x+y^2-x^2} = 0 \text{ implies } x = 2. \quad f_y = 2ye^{4x+y^2-x^2} = 0 \text{ implies } y = 0.
\]

The point \((2, 0)\) lies within the interior (not on the boundary). So we keep it.

Now consider restricting the function to \(x^2 + y^2 = 9 \), or \(y^2 = 9 - x^2 \) with \(-3 \leq x \leq 3\):

Set \(g(x) = f(x, \pm \sqrt{9 - x^2}) = e^{4x+9-2x^2} \). So \(g'(x) = 2(1 - x)e^{4x+9-2x^2} = 0 \) at the point \(x = 1 \) (with \(y = \pm 2\sqrt{2} \)).

With the endpoints at \(x = \pm 3 \) and the interior point found above we get the following potential extreme points: \((-3, 0), (1, 2\sqrt{2}), (1, -2\sqrt{2}), (2, 0), (3, 0)\).

<table>
<thead>
<tr>
<th>((x, y))</th>
<th>(f(x, y))</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-3, 0))</td>
<td>(e^{-21})</td>
<td>Global minimum</td>
</tr>
<tr>
<td>((1, 2\sqrt{2}))</td>
<td>(e^{11})</td>
<td>Global maximum</td>
</tr>
<tr>
<td>((1, -2\sqrt{2}))</td>
<td>(e^{11})</td>
<td>Global maximum</td>
</tr>
<tr>
<td>((2, 0))</td>
<td>(e^4)</td>
<td>Not a global extreme</td>
</tr>
<tr>
<td>((3, 0))</td>
<td>(e^3)</td>
<td>Not a global extreme</td>
</tr>
</tbody>
</table>

Find the global extremes of ...

(a) ... \(f(x, y) = \ln(2 + y^2 + x^2 - 2x) \) on the region given by \(4x^2 + y^2 \leq 16 \).

(b) ... \(f(x, y) = x^2\sqrt{x^2 + y^2 + 1} \) on the region given by \(x^2 - 1 \leq y \leq 3 \).

(c) ... \(f(x, y) = \frac{x^2+2xy+y^2}{x^2+y^2+1} \) on the region in the first quadrant given by \(1 \leq x+y \leq 2 \).
(2) Find the minimum value of \(f(x, y, z) = 3x^2 + 2x - 2xy + 3y^2 - 2y - z \) on the paraboloid \(z = x^2 + y^2 - 1 \).

(3) Find the maximum value of \(f(x, y, z) = xyz^2 \) on the ellipsoid \(9x^2 + 4y^2 + z^2 = 36 \).