14.2 Path and Line Integrals

We begin with a discussion of path integrals (the book calls them scalar line integrals). We will do this for a function of two variables, but these ideas can be naturally applied to a function of \(n \) variables.

Assume \(f(x, y) \) is defined on a smooth curve \(C \) of finite length, parameterized in terms of arc-length as \(r(s) = (x(s), y(s)) \) for \(a \leq t \leq b \). For the purposes of introducing this concept, we assume \(f(x, y) \geq 0 \). We will eventually mention what the difference is if this assumption is taken away.

We partition \(C \) into \(n \) small arcs by forming a partition of \([a, b]\) by picking \(s_i \) as follows:
\[
a = s_0 < s_1 < \cdots < s_n = b.
\]

Let \(\Delta s_i \) for \(i = 1, 2, ..., n \) denote the width of \([s_{i-1}, s_i]\). Pick “sample points \(s^*_i \) from \([s_{i-1}, s_i]\) for \(i = 1, 2, ..., n \).

Then we will approximate the area of the “curtain” under the curve \((x(s), y(s), f(x(s), y(s)))\) (over the curve \(C \) the \(xy \)-plane – see the picture at the top of the next page) by the Riemann sum
\[
A \approx \sum_{k=1}^{n} f(x(s^*_k), y(s^*_k)) \Delta s_k.
\]

Geometrically each summand is the area of a “curvy panel” (to visualize them, take a rectangular piece of paper and bend it).

Let \(\Delta(n) \) be the maximum value among the \(\Delta s_i \) for \(i = 1, 2, ..., n \). If the limit of the Riemann sums as \(n \to \infty \) exists for any sequence of partitions chosen such that \(\Delta(n) \to 0 \) as \(n \to \infty \) then this limit is called the path integral of \(f \) over \(C \) (aka scalar line integral), and it converges to the area of the “curtain.”

See the picture at the top of the next page.

Notation: When the limit exists, we say \(f \) is integrable on the smooth curve \(C \) of finite length and write \(\int_C f \, ds = \int_a^b f(r(s)) \, ds \) (where \(r(s) \) is an arc-length parametrization of \(C \)).

IMPORTANT:

- If we remove the assumption that \(f \) be non-negative, the path integral gives the “net area” (area above the \(xy \)-plane minus area below the \(xy \)-plane).
- This construction and these definitions naturally extend to a scalar-valued function \(f \) on a subset \(S \) of \(\mathbb{R}^n \) containing a smooth curve \(C \) of finite length.
We will compute the area of the “curtain” above, but for now we start with a more simplistic example:

A thin wire in a plane represented by a smooth curve C with a density function $\rho(x,y)$ (units of mass per length) has Mass $M = \int_C \rho \, ds$.

Suppose a thin wire occupies the curve $y = \sqrt{1-x^2}$ and has density $\rho(x,y) = y \text{ g/cm}$ (assume x,y carry units of cm). Let’s find the mass of this wire!

An arc-length parametrization of the upper half of the unit circle is $r(s) = \langle \cos (s), \sin (s) \rangle$ where $0 \leq s \leq \pi$.

So the path integral is

$$M = \int_C \rho \, ds = \int_0^\pi \rho(\cos (s), \sin (s)) \, ds = \int_0^\pi \rho(\cos (s), \sin (s)) \, ds = \int_0^\pi \sin (s) \, ds = 2 \text{ g}.$$
What do we do if we have an arbitrary parametrization of a smooth curve \(C \) of finite length?

We could try to find an arc-length parametrization, but often that creates an extremely “ugly” parametrization. Instead we will develop a formula that is independent of the parametrization!

Let \(C \) a smooth curve of finite length and the vector-valued function \(\mathbf{r}(t) \) for \(a \leq t \leq b \) be an arbitrary differentiable parametrization (moving along the curve in one direction – that is, not back and forth).

Recall the arc-length function below computes the arc-length along \(C \) from \(\mathbf{r}(a) \) to \(\mathbf{r}(t) \):

\[
s(t) = \int_a^t |\mathbf{r}'(u)| \, du.
\]

Differentiating (and using the Fundamental Theorem of Calculus) gives \(s'(t) = |\mathbf{r}'(t)| \). Then we have that \(ds = s'(t) \, dt = |\mathbf{r}'(t)| \, dt \).

Then if \(f \) is integrable, \(\int_C f \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt \). So we can compute the path integral with any parametrization! Naturally we call \(|\mathbf{r}'(t)| \) the speed factor.

Let’s find the area of the curtain at the top of the last page.

Let \(f(x, y) = \frac{3}{2} \cos^{-1}(x) \). Let \(C \) be given by \(\mathbf{r}(t) = (\cos(t/3), \sin(t/3)) \) for \(0 \leq t \leq 2\pi \). So we find \(\int_C f \, ds \):

\[
\int_C f \, ds = \int_0^{2\pi} \frac{3}{2} \cos^{-1} \left(\cos \left(\frac{t}{3} \right) \right) \left| \frac{1}{3} \left(-\sin \left(\frac{t}{3} \right), \cos \left(\frac{t}{3} \right) \right) \right| \, dt = \frac{1}{2} \int_0^{2\pi} \frac{t}{3} \, dt = \frac{1}{12} (2\pi)^2 = \frac{\pi^2}{3}.
\]

Note: This matches the simple solution which is to realize that this “curtain” is a just a “bent” triangle of base length \(\frac{2\pi}{3} \) and height \(\pi \).
Everything we have done here generalizes for a function of n variables:

Let f be an integrable scalar-valued function on some subset S of \mathbb{R}^n containing a smooth curve C of finite length parameterized by the differentiable vector-valued function

$$r(t) = (x_1(t), x_2(t), ..., x_n(t)) \quad \text{(moving along the curve in one direction)} \quad \text{for} \quad a \leq t \leq b.$$

Then

$$\int_C f \, ds = \int_a^b f(r(t))|r'(t)| \, dt = \int_a^b f(x_1(t), x_2(t), ..., x_n(t)) \sqrt{(x'_1(t))^2 + (x'_2(t))^2 + \cdots + (x'_n(t))^2} \, dt.$$

Let’s calculate the path integral $\int_C z^2 \, ds$ for the helical path given by $r(t) = (4 \cos(t), 4 \sin(t), 3t)$ for $0 \leq t \leq \pi/2$.

$$\int_C z^2 \, ds = \int_0^{\pi/2} (3t)^2 \sqrt{(-4 \sin(t))^2 + (4 \cos(t))^2 + (3)^2} \, dt = 45 \int_0^{\pi/2} t^2 \, dt = 15 \left(\frac{\pi}{2}\right)^3 = \frac{15\pi^3}{8}.$$

Let f be a function on a subset of \mathbb{R}^n containing a smooth curve C of finite length. The average value of f on C is given by $\frac{1}{\ell(C)} \int_C f \, ds$ where $\ell(C)$ is the length of C.

Find the average value of $f(w, x, y, z) = w^2 + x + 2y + 3z$ on the line segment joining $(0, 1, 1, 2)$ to $(1, 2, 2, 1)$.

Let’s find a parametrization of the line segment: $r(t) = (0 + t, 1 + t, 1 + t, 2 - t)$ for $0 \leq t \leq 1$.

The length of this curve is $\ell = \sqrt{1 + 1 + 1 + 1} = 2$. This is also the speed factor!

$$\int_C f \, ds = \int_0^1 (t^2 + (1 + t) + 2(1 + t) + 3(2 - t)) \, (2) \, dt = 2 \int_0^1 t^2 + 9 \, dt = 2 \left(\frac{1}{3} + 9\right) = \frac{56}{3}.$$

So the average value of f on the line segment is $\frac{28}{3}$.
Now we introduce the concept of a line integral of a vector field. First we start with some background.

An oriented curve C is a parameterized curve for which a direction is specified. The positive orientation is the direction the curve is generated as the parameter increases; the negative orientation is direction as the parameter decreases.

For instance, the positive orientation of $\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$ is counter-clockwise.

Let \mathbf{F} be a continuous vector field on some subset of \mathbb{R}^n that contain a smooth curve C of finite length with an arc-length parametrization $\mathbf{r}(s)$. Let \mathbf{T} be the unit tangent vector at each point of C (with the positive orientation given by the parametrization).

The line integral of \mathbf{F} over a curve C (with a given orientation) is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$.

IMPORTANT: $\mathbf{F} \cdot \mathbf{T}$ is the component of \mathbf{F} in the direction of \mathbf{T}. Hence, geometrically, the integral is “adding up” the components of the vector field that are tangential to the curve. As we will see this has many applications.

We immediately seek a way to evaluate a line integral that does not require an arc-length parametrization:

Let \mathbf{F} be a vector field on some subset of \mathbb{R}^n that contains a smooth curve parameterized by a differentiable vector-valued function $\mathbf{r}(t)$ for $a \leq t \leq b$ such that $\mathbf{r}'(t) \neq 0$ for all $t \in [a, b]$.

Then $\mathbf{T} = \frac{\mathbf{r}'}{|\mathbf{r}'|}$. Then making use of the fact that $ds = |\mathbf{r}'|dt$ we get

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{F} \cdot \frac{\mathbf{r}'}{|\mathbf{r}'|} |\mathbf{r}'| \, dt = \int_a^b \mathbf{F} \cdot \mathbf{r}' \, dt.$$

There are other ways to write this:

$$\int_C \mathbf{F} \cdot d\mathbf{r} \text{ where } d\mathbf{r} = \mathbf{r}' \, dt.$$

$$\int_C f_1 \, dx_1 + f_2 \, dx_2 + \cdots + f_n \, dx_n \text{ where } \mathbf{F} = \langle f_1, f_2, \ldots, f_n \rangle \text{ and } \mathbf{r}(t) = \langle x_1(t), x_2(t), \ldots, x_n(t) \rangle.$$

Here is the connection: $d\mathbf{r} = \langle x'_1(t), x'_2(t), \ldots, x'_n(t) \rangle \, dt = \langle dx_1, dx_2, \ldots, dx_n \rangle$.

Let’s work through some examples:

Let’s evaluate the line integral of $\mathbf{F} = \langle x - y, x \rangle$ on the parabola $y = x^2$ from $(0, 0)$ to $(1, 1)$:

We can use the graph parametrization $\mathbf{r}(t) = \langle t, t^2 \rangle$ (which has the right orientation). Calling the parabola C we get

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \langle t - t^2, t \rangle \cdot (1, 2t) dt = \int_0^1 t + t^2 dt = \frac{5}{6}.$$

This yields a measure of the strength of the field along the curve in the direction of the curve. Here is a picture:
Work:

If \(\mathbf{F} \) is a vector field in a region \(D \) of \(\mathbb{R}^3 \) representing the force (as a vector) at points inside \(D \) then the work done in moving an object along a curve \(C \) in some direction is the line integral of \(\mathbf{F} \) over \(C \) (using a suitably oriented parametrization).

An electric charge at \((0, 0, 0)\) produces a force field on other point charges given by
\[
\mathbf{F} = \frac{k}{(x^2 + y^2 + z^2)^{3/2}} \langle x, y, z \rangle
\]
where \(k \) is a constant. Let’s calculate the work done in moving a point charge from \((1, 1, 1)\) to \((a, a, a)\):

Using \(\mathbf{r}(t) = \langle t, t, t \rangle \) for \(1 \leq t \leq a \), we get
\[
W = \int_1^a \frac{k}{(3t^2)^{3/2}} \langle t, t, t \rangle \cdot \langle 1, 1, 1 \rangle \ dt = \int_1^a \frac{k(3t)}{3\sqrt{3}t^3} \ dt = \frac{k}{\sqrt{3}} \int_1^a \frac{1}{t^2} \ dt = \frac{k}{\sqrt{3}} \left(1 - \frac{1}{a} \right)
\]

Circulation:

Let \(C \) be a closed (ends where it begins) smooth oriented curve in \(\mathbb{R}^n \) parameterized once around by \(\mathbf{r}(t) \) for \(a \leq t \leq b \) (consistent with the orientation) in a region \(D \) where a continuous vector field \(\mathbf{F} \) is defined.

The circulation of \(\mathbf{F} \) on \(C \) is the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

Let’s calculate the circulation of \(\mathbf{F} = \frac{1}{\sqrt{x^2 + y^2}} \langle x, y \rangle \) on the circle \((x - 2)^2 + (y - 2)^2 = 4 \) using a counter-clockwise orientation:

Let’s label the circle by \(C \). First we parameterize the \(C \) once counterclockwise with \(\mathbf{r}(t) = \langle 2 + 2 \cos(t), 2 + 2 \sin(t) \rangle \) for \(0 \leq t \leq 2\pi \).

Then we integrate:
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \frac{1}{\sqrt{(2 + 2 \cos(t))^2 + (2 + 2 \sin(t))^2}} (2 + 2 \cos(t), 2 + 2 \sin(t)) \cdot (-2 \sin(t), 2 \cos(t)) \ dt
\]
\[
= 2 \int_0^{2\pi} \frac{\cos(t) - \sin(t)}{\sqrt{2 + 2 \cos(t) + 2 \sin(t)}} \ dt
\]
\[
= \sqrt{2} \int_0^{2\pi} \frac{\cos(t) - \sin(t)}{\sqrt{1 + \cos(t) + \sin(t)}} \ dt
\]
\[
= 2\sqrt{2} \sqrt{1 + \cos(t) + \sin(t)} \bigg|_0^{2\pi}
\]
\[
= 0.
\]

The circulation is zero because as much of the vector field points along the path as against the path when traversing \(C \). See the picture on the next page!
Think of it like the vector field is the wind and you walk around C. In this case, as much is at your back as at your face...

Let $\mathbf{F} = \langle x^2, 2xy + x, z \rangle$ and let C be the circle $x^2 + y^2 = 1$ oriented counterclockwise in the plane $z = 1$. Let’s find the circulation of \mathbf{F} on C:

Let’s use the parametrization $\mathbf{r}(t) = \langle \cos(t), \sin(t), 1 \rangle$. Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \langle \cos^2(t), 2\cos(t)\sin(t) + \cos(t), 1 \rangle \cdot \langle -\sin(t), \cos(t), 0 \rangle \, dt$$

$$= \int_0^{2\pi} -\sin(t)\cos^2(t) + 2\cos^2(t)\sin(t) + \cos^2(t) \, dt$$

$$= \int_0^{2\pi} \cos^2(t)\sin(t) + \cos^2(t) \, dt$$

$$= \int_0^{2\pi} \cos^2(t)\sin(t) + \frac{1}{2} (1 + \cos(2t)) \, dt$$

$$= -\frac{1}{3} \cos^3(t) + \frac{1}{2} \left(t + \frac{1}{2} \sin(2t) \right) \bigg|_0^{2\pi}$$

$$= \pi.$$

Note: Circulation may be computed on a closed curve made up of piecewise smooth curves by just computing the line integral on each curve and adding up the results.
Flux:

The line integral of a vector field F “adds up” the components of F along a smooth curve C of finite length. What if we were to do the same thing, but with the normal components? That is called the flux of F across C. We will only focus on how this is developed for a vector field in a plane:

To come up with the flux integral in a plane, we first have to determine a way to find the unit normal vector to a smooth curve C of finite length. Let $\mathbf{r}(t) = \langle x(t), y(t) \rangle$ for $a \leq t \leq b$ be a differentiable parametrization of C (with some fixed orientation) such that $\mathbf{r}' \neq 0$ for all $a \leq t \leq b$.

Recall: $T = \frac{\mathbf{r}'}{|\mathbf{r}'|}$ is the unit tangent vector to C in the direction of the parametrization.

Second we embed the xy-plane into \mathbb{R}^3, where the vector $\mathbf{k} = \langle 0, 0, 1 \rangle$ is orthogonal to the xy-plane. Then a unit vector orthogonal to C in the xy-plane would be orthogonal to both T and \mathbf{k}. So we set $\mathbf{N} = T \times \mathbf{k}$ (the cross product of two orthogonal unit vectors gives a unit vector orthogonal to both inputs) and drop its third component, which is 0, so that it ultimately lives in \mathbb{R}^2.

So the integral for the flux of F across C is $\int_C F \cdot \mathbf{N} \, ds$ where s is arc-length.

IMPORTANT: $F \cdot \mathbf{N}$ is the normal component of F to the curve C. In the case where C is a smooth closed curve using a counterclockwise orientation, \mathbf{N} points outward to C, and thus, wherever F points outward across C there is a positive contribution to the flux integral, while wherever F point inward across C there is a negative contribution to the flux integral.

Our first goal is to find a nicer formula for flux:

Embedded in \mathbb{R}^3, $T = \frac{1}{\sqrt{(x'(t))^2 + (y'(t))^2}} \langle x'(t), y'(t), 0 \rangle$.

Then $\mathbf{N} = T \times \mathbf{k} = \frac{1}{\sqrt{(x'(t))^2 + (y'(t))^2}} \langle y'(t), -x'(t), 0 \rangle$.

After dropping the third component, $\mathbf{N} = \frac{1}{\sqrt{(x'(t))^2 + (y'(t))^2}} \langle y'(t), -x'(t) \rangle$.

Then with $F = \langle f, g \rangle$

$$\int_C F \cdot \mathbf{N} \, ds = \int_C F \cdot \frac{\langle y'(t), -x'(t) \rangle}{\sqrt{(x'(t))^2 + (y'(t))^2}} \sqrt{(x'(t))^2 + (y'(t))^2} \, dt = \int_C f \, dy - g \, dx.$$
Let’s find and simplify the flux integral of \(\mathbf{F} = \frac{1}{\sqrt{x^2 + y^2}} \langle x, y \rangle \) on the circle

\[(x - 2)^2 + (y - 2)^2 = 4\] using a counter-clockwise orientation:

Let’s label the circle by \(C \). First we parameterize the \(C \) once counterclockwise with \(\mathbf{r}(t) = \langle 2 + 2 \cos(t), 2 + 2 \sin(t) \rangle \) for \(0 \leq t \leq 2\pi \).

Then we integrate:

\[
\int_C \mathbf{F} \cdot \mathbf{N} \, ds = \int_0^{2\pi} \frac{(2 + 2 \cos(t))(2 \cos(t)) - (2 + 2 \sin(t))(-2 \sin(t))}{\sqrt{(2 + 2 \cos(t))^2 + (2 + 2 \sin(t))^2}}, \, dt
\]

\[
= 2 \int_0^{2\pi} \frac{1 + \cos(t) + \sin(t)}{\sqrt{2 + 2 \cos(t) + 2 \sin(t)}}, \, dt
\]

\[
= \sqrt{2} \int_0^{2\pi} \frac{1 + \cos(t) + \sin(t)}{\sqrt{1 + \cos(t) + \sin(t)}}, \, dt
\]

\[
= \sqrt{2} \int_0^{2\pi} \sqrt{1 + \cos(t) + \sin(t)}, \, dt
\]

\[
\approx 7.5.
\]

Note: The integral was approximated numerically with Mathematica.

Anyway, the positive result means that more of the vector field flows out of the region than into the region (just take a look at the picture a couple pages back).