APPLIED DIFFERENTIAL EQUATIONS - MTH 256 (4 credits)

Winter 2019

Sections:
Sec. 010 (CRN 30110) meets MWF, 10-10:50 AM in Cordley 1109 (with a Tuesday recitation – times vary)
Sec. 030 (CRN 33942) meets MWF, 9-9:50 AM in Cordley 1109 (with a Tuesday recitation – times vary)

Instructor Information (for both sections):
- E-mail: Filix Maisch, maischf@math.oregonstate.edu
- Office and Office Hours: Kidder 368C, MW 4-4:50pm and F 3-3:50pm (Fri. in MSLC – Kidder 108H)

Teaching Assistant (TA) Information:
Section 010 Zihao (Kevin) Zhang, zhangzi2@math.oregonstate.edu, Kidder 069, Thursdays 12-3pm
Section 030 Matthias Merzenich, merzenim@math.oregonstate.edu, Kidder 262, Office Hours/MLC Hours TBAD

*** Please only go to YOUR TA’s office hours ***
Prerequisites: Math 254 with a C- or better.

Textbooks: Elem. Differential Equations w/ Boundary Value Problems, Trench (See link on webpage and Canvas.)

Student Conduct Code: Students are expected to be familiar with Oregon State University’s Expectations for Student Conduct. Please review these at the following web link:

http://studentlife.oregonstate.edu/code

Catalog Course Description: We cover first order linear and nonlinear equations, as well as second order linear equations, with a little bit on higher order equations mixed in throughout. Applications include mixing problems, motion with resistance, springs, as well as others appropriate for science and engineering. We end with an introduction to the Laplace transform.

Course Content: Basic terms and definitions, linear first order equations, separable equations, existence and uniqueness of solutions, Bernoulli equations and transformations, exact equations, autonomous equations and asymptotic stability, applications of first order equations, linear second order (and higher) equations, the Wronskian, constant coefficient equations, non-homogeneous equations, method of undetermined coefficients, reduction of order, Euler equations, variation of parameters, applications of second order equations, the Laplace transform, inverse Laplace transforms, IVP solutions, piecewise continuous forcing functions, impulses, convolution, integral equations, numerical methods.

Course Specific Learning Outcomes: A successful student in Math 251 will be able to:

1. Identify and solve first order differential equations that are separable, exact, homogeneous, or linear or can be reduced to such equations by a simple change of variable.

2. Construct and analyze models for physical systems (such as for mixing, cooling, radioactive decay) that can be described by first order linear or nonlinear differential equations.

3. Describe the basic structure of the solution space for linear differential equations (principally of second order) and be able to use this structure to solve such equations.

4. Construct and analyze models for physical systems that can be described by second order linear differential equations.

5. Use Laplace transforms to solve initial value problems.
Grading: Your grade is determined by a syllabus quiz, online homework, recitation group work activities, two evening midterms, and a final. There may also be extra credit based on participation in lecture (see below).

The course will be graded as follows

- **Syllabus Quiz** 2%
- **Homework** 15%
- **Recitation Activities** (8 in total) and the “Integration Skills Check”: 18%
- **Midterms** 30% (each 15%)
- **Final** 35%

Your grade in the course will not be harder than:

A-/A 90% - 100%, B-/B+/ B+ 80% - 89.9%, C-/C/C+ 70% - 79.9%, D-/D/D+ 60%-69.9%, F 0%-59.9%.

Syllabus Quiz: A short (canvas) quiz testing your knowledge of this syllabus will be available during weeks 1 and 2. It’s due on Sunday, Jan. 20th. It is a quiz in the sense that you get 1 attempt per problem to get it right (just like as if you turned it in on paper).

Exams: There will be two midterms, and a cumulative final exam. Calculators are NOT allowed on exams. The final does NOT replace a midterm. You are allowed both sides of one 3 inch by 5 inch handwritten page on each midterm. The size increases to 4 inch by 6 inch for the final. Tests are not allowed to be made-up unless the circumstances are truly exceptional and contact requesting the accommodation is made PRIOR to the test. Contact your instructor to request an accommodation. **We will use Gradescope to grade exams.** There will be an access link through Canvas (and an email sent out to encourage you to sign up). Through this online platform you will be able to see your graded exam and be able to request a regrade on any of the problems.

- **First Midterm:** Tuesday evening, Feb. 5th at 7:00-8:20 PM, location TBAD
- **Second Midterm:** Tuesday evening, Feb. 26th at 7:00-8:20 PM, location TBAD
- **Final Exam:** Tuesday evening, March 19th at 8:00-9:50 PM, location TBAD

Recitation Group Work: Most weeks in recitation you will be asked to work on a recitation group-work activity, due at the start of the following week’s recitation. See the term calendar. The activities will only be released during recitation. Every group member individually is required to submit an activity. Each activity will be graded as follows: 50% for completion and 50% for correctness on a randomly chosen subset of the problems. Late activities accepted up to one day late (by 5PM) for half-credit.

Integration Skills Check: A 10-question integration skills quiz will be given in week 1’s recitation and you just get whatever proportion of the credit that corresponds to your score (no partial credit given). You will be given 40 minutes to complete it. No calculators nor notes are allowed. While not a major component of your grade (2%) it is a good way to check your integration abilities. If you do poorly on this quiz, it is imperative that you review the appropriate integration techniques. **You will not be given an opportunity to take it again.**
Homework: Homework is online (WeBWorK) and can be accessed through the webpage and Canvas. Your username is the same as for your onid account. So if your OSU e-mail address is smitha@oregonstate.edu then your username is smitha. Your password is your OSU student ID number (no dashes). E-mail me ASAP if it doesn’t work. Due dates below have a 48 hour grace period, and if you run into any issues (questions, server crashes, etc.) working on the problems during the grace period, no accommodation will be made as you are already TECHNICALLY DOING THE HOMEWORK LATE. Homework CANNOT be completed after the grace period ends, no exceptions. You should attempt Homework 4 before the first midterm and Homework 6 before the second midterm.

Each assignment is equally weighted. Getting 80% or better on each is enough for full credit. Below that you should start to lose credit prorated to 80%. You should be able to easily get all this credit!

Extra Credit – Lecture Participation: There may be up to a maximum of 5% of extra credit available in lecture. This will consist of up to 5 pop-discussion quizzes (where you can discuss the problems with your fellow students) given during some of the lectures (unannounced).

Students With Disabilities: Accommodations for students with disabilities are determined and approved by Disability Access Services (DAS). If you, as a student, believe you are eligible for accommodations but have not obtained approval please contact DAS immediately at 541-737-4098 or at http://ds.oregonstate.edu. DAS notifies students and faculty members of approved academic accommodations and coordinates implementation of those accommodations. While not required, students and faculty members are encouraged to discuss details of the implementation of individual accommodations.

MSLC: The Math and Statistics Learning Center (MSLC) is in Kidder 108H. You can go there for free drop-in tutoring. It is open STARTING week 2 going through Dead Week. The hours are MTWTh 9-5, Fri 9-4, and Sunday through Thursday evenings 7-10.

Course (Tentative) Calendar:

<table>
<thead>
<tr>
<th>Week</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Concepts</td>
<td>Integration Skills Check</td>
<td>Linear First Order Eq’ns</td>
<td>Separable Eq’ns</td>
</tr>
<tr>
<td>2</td>
<td>Existence and Uniqueness</td>
<td>Activity 1</td>
<td>Transformations</td>
<td>Exact Eq’ns</td>
</tr>
<tr>
<td>3</td>
<td>MLK JR DAY (no class)</td>
<td>Act. 2 (1 due)</td>
<td>Autonomous Eq’ns</td>
<td>Applications</td>
</tr>
<tr>
<td>4</td>
<td>Applications</td>
<td>Act. 3 (2 due)</td>
<td>Linear Second Order Eq’ns</td>
<td>The Wronskian</td>
</tr>
<tr>
<td>5</td>
<td>No class: Optional Review</td>
<td>Act. 4 (3 due) & Exam 1</td>
<td>Non-homogeneous Eq’ns</td>
<td>Undetermined Coeff.</td>
</tr>
<tr>
<td>6</td>
<td>Undetermined Coeff.</td>
<td>Act. 5 (4 due)</td>
<td>Reduction of Order</td>
<td>Euler Eq’ns</td>
</tr>
<tr>
<td>7</td>
<td>Variation of Parameters</td>
<td>Act. 6 (5 due)</td>
<td>Applications</td>
<td>Applications</td>
</tr>
<tr>
<td>8</td>
<td>No class: Optional Review</td>
<td>Act. 7 (6 due) & Exam 2</td>
<td>Laplace Transformations</td>
<td>Inverse Laplace</td>
</tr>
<tr>
<td>9</td>
<td>IVP Solutions</td>
<td>Act. 8 (7 due)</td>
<td>Piecewise Cont. Forcing</td>
<td>Impulses (Dirac Delta)</td>
</tr>
<tr>
<td>10</td>
<td>Convolution</td>
<td>Final Review (Act. 8 due)</td>
<td>Numerical Methods</td>
<td>Final Review</td>
</tr>
</tbody>
</table>

Notes: Syllabus Quiz due Sun. 1/20/2019. For each Tuesday evening group midterm, the class on the preceding Monday is canceled. I have turned these into optional reviews. The final is Tuesday, March 19th, at 8 PM (Location TBAD).