Homework 2
Answer Key

1. Let U, V be subspaces of a vector space W.

(a) The subspace sum of U and V is $U + V = \{ u + v \mid u \in U; v \in V \}$. Show that $U + V$ is a subspace of W.

Solution: We must prove the three subspace axioms:

- **V contains 0:** Since U and V are subspaces, they both contain 0, so $0 = 0 + 0 \in U + V$.

- **V is closed under addition:** Let $u_1 + v_1$ and $u_2 + v_2$ be arbitrary elements of $U + V$ where $u_1, u_2 \in U$ and $v_1, v_2 \in V$. Then

$$(u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2) \in U + V.$$

- **V is closed under scalar multiplication:** Let $u + v$ be an arbitrary element of $U + V$ where $u \in U$ and $v \in V$, and let λ be an arbitrary scalar. Then

$$\lambda(u + v) = \lambda u + \lambda v \in U + V$$

(b) Let $x \in W$, but $x \notin V$. Show that for all $v \in V$, $v + x \notin V$.

Solution: We will use proof by contradiction. Suppose that there exists $v \in V$ such that $v + x \in V$. Then

$$x = -v + (v + x) \in V,$$

but this contradicts our assumption that $x \notin V$.

(c) Show that the union $U \cup V$ is a subspace if and only if $U \subseteq V$ or $V \subseteq U$.

Solution: This is an if and only if statement, so we must prove the implication in two directions.

(i) $\left(\Rightarrow\right)$ Assume $U \subseteq V$. Then $U \cup V = V$ which was assumed to be a subspace of W. Similarly, if $V \subseteq U$, then $U \cup V = U$ is a subspace of W by assumption.

(ii) $\left(\Leftarrow\right)$ Assume $U \cup V$ is a subspace. For this direction we will use a proof by contradiction. Suppose that $U \nsubseteq V$ and $V \nsubseteq U$. Then there exists $u \in U$ and $v \in V$ such that $u \notin V$ and $v \notin U$. By problem 1(b) we have that

$$u + v \notin U \quad \text{and} \quad u + v \notin V,$$

so $u + v \notin U \cup V$. This contradicts the assumption that $U \cup V$ is a subspace (since subspaces are closed under addition).
(d) The subspace sum $U + V$ is a **direct sum** (denoted $U \oplus V$) if each element in $U + V$ can be written in only one way as a sum $u + v$ where $u \in U$, $v \in V$. Show that $U + V$ is a direct sum if and only if $U \cap V = \{0\}$.

Solution: Again, this is an if and only if statement, so we must prove the implication in two directions.

(i) (\Leftarrow) Assume $U \cap V = \{0\}$ and let $u_1 + v_1$ and $u_2 + v_2$ be arbitrary elements of $U + V$ where $u_1, u_2 \in U$ and $v_1, v_2 \in V$. We want to show that if $u_1 + v_1$ and $u_2 + v_2$ represent the same element of $U + W$ then $u_1 = u_2$ and $v_1 = v_2$.

Suppose that

$$u_1 + v_1 = u_2 + v_2.$$

Rearranging this equation gives

$$u_1 - u_2 = v_2 - v_1.$$

Since $u_1 - u_2 \in U$ and $v_2 - v_1 \in V$, both sides of this equation must be in $U \cap V = \{0\}$. Then

$$u_1 - u_2 = 0,$$

$$v_2 - v_1 = 0,$$

so $u_1 = u_2$ and $v_1 = v_2$ as desired.

(ii) (\Rightarrow) Assume each element of $U + V$ can be written in only one way as a sum $u + v$ where $u \in U$ and $v \in V$. We will use proof by contradiction for this direction. Suppose that $U \cap V \neq \{0\}$, so there exists a nonzero $w \in U \cap V$. Then there is more than one way to write $0 \in U + V$ as $u + v$. For example, we could let

$$u = v = 0,$$

or we could let

$$u = w$$ and $$v = -w.$$

This contradicts our assumption that each element of $U + V$ can be written in only one way as a sum $u + v$ where $u \in U$ and $v \in V$.

2
2. Suppose \(U = \{(x, 2x, y, x + y) \mid x, y \in \mathbb{C}\} \). Show that \(U \) is a subspace of \(\mathbb{C}^4 \) and find another subspace \(V \) such that \(U \oplus V = \mathbb{C}^4 \). Prove your answers!

Solution: We want to choose \(V \) so that every element of \(\mathbb{C}^4 \) can be written as \(u + v \) for some \(u \in U \) and \(v \in V \). Notice that in \(U \) we can already get the first and third coordinates to be whatever we want by choosing values for \(x \) and \(y \). However, the second and fourth coordinates are then determined by our choice of \(x \) and \(y \). This means that a good choice for \(V \) is
\[
V = \{(0, a, 0, b) \mid a, b \in \mathbb{C}\}.
\]

Notice that any element \((z_1, z_2, z_3, z_4) \in \mathbb{C}^4 \) can be written as
\[
(x, 2x, y, x + y) + (0, a, 0, b).
\]

Just let
\[
x = z_1, \quad y = z_3, \quad a = z_2 - 2z_1, \quad b = z_4 - (z_1 + z_2).
\]

Therefore \(\mathbb{C}^4 \subseteq U + V \). Since \(U \) and \(V \) are subspaces of \(\mathbb{C}^4 \), we also have that \(U + V \subseteq \mathbb{C}^4 \), so \(U + V = \mathbb{C}^4 \).

We now want to show that this sum is direct. To do this we will use problem 1(d). We need to show that \(U \cap V = \{0\} \). Let
\[
z = (z_1, z_2, z_3, z_4) \in U \cap V.
\]

Since \(z \in V \) we have \(z_1 = z_3 = 0 \). Now consider \(z \) as an element of \(U \). We have
\[
(0, z_2, 0, z_4) = (x, 2x, y, x + y) \quad \text{for some} \quad x, y \in \mathbb{C}.
\]

By the equations in the first and third coordinates, \(x = 0 \) and \(y = 0 \), so
\[
z_2 = 2x = 0 \quad \text{and} \quad z_4 = x + y = 0.
\]

Therefore
\[
z = (0, 0, 0, 0),
\]

so \(U \cap V = \{0\} \). By problem 1(d), \(U + V = \mathbb{C}^4 \) is a direct sum of \(U \) and \(V \), so we can write \(U \oplus V = \mathbb{C}^4 \).

3. Show that \(1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3 \) forms a basis of \(\mathbb{P}_3(\mathbb{F}) \) (polynomials over the field \(\mathbb{F} \) of degree at most 3).

Solution: Let
\[
B = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}.
\]

To show that \(B \) is a basis for \(\mathbb{P}_3(\mathbb{F}) \) we need to show that it spans \(\mathbb{P}_3(\mathbb{F}) \) and is linearly independent.

Notice that
\[
1 = 1,
\]
\[
x = (1 + x) - (1),
\]
\[
x^2 = (1 + x + x^2) - (1 + x),
\]
\[
x^3 = (1 + x + x^2 + x^3) - (1 + x + x^2),
\]

so \(1, x, x^2, x^3 \in \text{span}(B) \). Since \(\{1, x, x^2, x^3\} \) is a basis for \(\mathbb{P}_3(\mathbb{F}) \) it spans all of \(\mathbb{P}_3(\mathbb{F}) \), so we must also have that \(B \) also spans all of \(\mathbb{P}_3(\mathbb{F}) \).

To see that \(B \) is linearly independent, notice that \(B \) is a set of four vectors that spans the 4-dimensional space \(\mathbb{P}_3(\mathbb{F}) \). Therefore \(B \) is a basis for \(\mathbb{P}_3(\mathbb{F}) \), so \(B \) is linearly independent.

The fact that a set of \(n \) vectors spanning an \(n \)-dimensional space is a basis was covered on recitation worksheet 3 and is also covered in the book *Linear Algebra Done Right*.

3
4. Let U, V be vector spaces and $T: U \to V$ be a linear transformation.

(a) Show that if $v_1, v_2, \ldots, v_k \in U$ and if Tv_1, Tv_2, \ldots, Tv_k are linearly independent then v_1, v_2, \ldots, v_k are linearly independent.

Solution: Suppose $v_1, v_2, \ldots, v_k \in U$ and that Tv_1, Tv_2, \ldots, Tv_k are linearly independent. Set a linear combination of the v_i equal to zero:

$$c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0 \quad \text{for scalars } c_1, c_2, \ldots, c_k.$$

We want to show that $c_i = 0$ for all $i = 1, \ldots, k$. Apply the transformation T to both sides of the equation and use linearity:

$$T(c_1v_1 + c_2v_2 + \cdots + c_kv_k) = T(0)$$

$$\downarrow$$

$$c_1Tv_1 + c_2Tv_2 + \cdots + c_kTv_k = 0$$

Since Tv_1, Tv_2, \ldots, Tv_k are linearly independent, we must have that $c_i = 0$ for all $i = 1, \ldots, k$.

(b) T is injective if for every $u, v \in U$, $Tu = Tv$ implies $u = v$. An injective linear transformation is called a monomorphism. Show that T is a monomorphism if and only if the null space (aka kernel) of T is $\{0\}$.

Solution: we must prove the implication in both directions.

(i) (\Rightarrow) Assume T is a monomorphism. Let $u \in \text{null}(T)$. Then by the definition of the null space, $T(u) = 0$. Therefore

$$Tu = 0 = T(0).$$

Since T is a monomorphism (i.e., is injective) we must have $u = 0$, so $\text{null}(T) = \{0\}$.

(ii) (\Leftarrow) Assume $\text{null}(T) = \{0\}$. Let $u, v \in U$ such that $Tu = Tv$. Then

$$T(u - v) = Tu - Tv$$

$$= 0,$$

so $u - v \in \text{null}(T)$. Since $\text{null}(T) = \{0\}$, we have $u - v = 0$, so $u = v$ as desired.

(c) Show that if T is a monomorphism and $v_1, v_2, \ldots, v_k \in U$ are linearly independent then Tv_1, Tv_2, \ldots, Tv_k are linearly independent.

Solution: Assume T is a monomorphism and suppose $v_1, v_2, \ldots, v_k \in U$ are linearly independent. Set a linear combination of the Tv_i equal to zero:

$$c_1Tv_1 + c_2Tv_2 + \cdots + c_kTv_k = 0 \quad \text{for scalars } c_1, c_2, \ldots, c_k.$$

We want to show that $c_i = 0$ for all $i = 1, \ldots, k$. Using linearity, we can rewrite the above equation as

$$T(c_1v_1 + c_2v_2 + \cdots + c_kv_k) = T(0).$$

Since T is injective, we have

$$c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0.$$

Finally, since v_1, \ldots, v_k are linearly independent we have $c_i = 0$ for all $i = 1, \ldots, k$.

5. Let \(V \) be a vector space over a field \(\mathbb{F} \) and \(T \in \mathcal{L}(V, \mathbb{F}) \). Suppose \(v \in V \) is not in \(\ker(T) \).

Solution: Since \(\ker(T) \) and \(\{cv \mid c \in \mathbb{F}\} \) are subsets of \(V \), their sum is also a subset of \(V \).

We now want to show that \(V \subseteq \ker(T) + \{cv \mid c \in \mathbb{F}\} \).

Let \(u \) be an arbitrary element of \(V \), and consider the vector

\[
w = u - \frac{T}{Tv} v \in V
\]

(note that \(Tv \neq 0 \) since \(v \notin \ker(T) \)). If we apply \(T \) to \(w \) we get

\[
T(w) = T \left(u - \frac{T}{Tv} v \right)
\]

\[
= Tu - \frac{T}{Tv} T v
\]

\[
= Tu - Tu
\]

\[
= 0,
\]

so \(w \in \ker(T) \). Therefore

\[
u = w - \frac{T}{Tv} v \in \ker(T) + \{cv \mid c \in \mathbb{F}\},
\]

so \(V \subseteq \ker(T) + \{cv \mid c \in \mathbb{F}\} \) and hence \(V = \ker(T) + \{cv \mid c \in \mathbb{F}\} \).

We now want to show that this sum is direct. Let \(u \in \ker(T) \cap \{cv \mid c \in \mathbb{F}\} \). Since \(u \in \{cv \mid c \in \mathbb{F}\} \) we can write

\[
u = \lambda v \quad \text{for some } \lambda \in \mathbb{F}.
\]

Since \(u \in \ker(T) \) we have

\[
0 = Tu
\]

\[
= T(\lambda v)
\]

\[
= \lambda Tv.
\]

\(v \) was assumed to not be in \(\ker(T) \), so \(T(v) \neq 0 \). Thus we can divide both sides by \(Tv \) to get \(\lambda = 0 \). Therefore

\[
u = 0v = 0,
\]

so \(\ker(T) \cap \{cv \mid c \in \mathbb{F}\} = \{0\} \). By problem 1(d) the subspace sum is direct, and we can write

\[
V = \ker(T) \oplus \{cv \mid c \in \mathbb{F}\}.
\]