(1) Show any group of order 4 is abelian.

Hint: We know cyclic groups are abelian.

Proof: Assume \(G \) is a group of order 4. Since cyclic groups are abelian, we assume \(G \) is not cyclic. That means \(G \) consists of the identity element \(e \) and three order two elements. Let \(a, b \in G \). Then each of \(a, b \) and \(ab \) has order 1 or 2. So \(a^2 = b^2 = (ab)^2 = e \) implying \((ab)^2 = a^2b^2 \), which, as shown on a previous homework, is enough to conclude that \(G \) is abelian. □

(2) Let \(G, H \) be groups. Prove that if \(\phi : G \to H \) is a homomorphism then the image of \(G \) under \(\phi \), that is \(\phi(G) = \{ \phi(x) | x \in G \} \), is a subgroup of \(H \).

Proof: Let \(\phi : G \to H \) be a homomorphism. Clearly \(\phi(G) \) is non-empty. Let \(a, b \in \phi(G) \). Then \(a = \phi(g) \) and \(b = \phi(k) \) for some \(g, k \in G \). Consider that \(\phi(gk^{-1}) = \phi(g)\phi(k)^{-1} = ab^{-1} \). Thus \(ab^{-1} \in \phi(G) \), showing that \(\phi(G) \) a subgroup of \(H \). □

(3) Suppose \(G \) is a group with normal subgroups \(M, N \) such that \(M \cap N = \{ e \} \) where \(e \) is the identity of \(G \). Show that for any \(m \in M \) and for any \(n \in N \), \(mn = nm \).

Proof: Let \(m \in M \) and \(n \in N \). Consider the element \(x = mnm^{-1}n^{-1} \). Since \(M \) is a normal subgroup of \(G \) it follows that \(x = m(nm^{-1}n^{-1}) \) is in \(M \). Since \(N \) is a normal subgroup of \(G \) it follows that \(x = (mnm^{-1})n^{-1} \) is in \(N \). Hence \(x \in M \cap N \). So \(x = e \). Then by right multiplication by \(nm \) we get \(nm = mn \). □

(4) Let \(G \) be a group and \(Z(G) = \{ z \in G | zg = gz \ \forall g \in G \} \) (called the center of \(G \)). Show that \(Z(G) \leq G \) and if \(G/Z(G) \) is a cyclic group then \(G \) is abelian.

Proof: Clearly \(e \in Z(G) \) as \(eg = ge = g \) for all \(g \in G \). Let \(a, b \in Z(G) \) and \(g \in G \). Since \(bg^{-1} = g^{-1}b \) it follows \(gb^{-1} = b^{-1}g \) that by taking the inverse of both sides. Then \(ab^{-1}g = agb^{-1} = gab^{-1} \). Hence \(ab^{-1} \in Z(G) \). That shows \(Z(G) \leq G \). Consider \(gag^{-1} = agg^{-1} = a \in Z(G) \). Hence \(Z(G) \leq G \).

Suppose \(G/Z(G) \) is cyclic and generated by \(xZ(G) \). Let \(g, h \in G \). Then there exists integers \(i, j \) such that \(gZ(G) = x^iZ(G) \) and \(hZ(G) = x^jZ(G) \). Then \(g = x^iy \) and \(h = x^jy \) for some \(y, z \in Z(G) \). Then

\[
gh = x^iyx^jz = zx^ix^jy = zx^jx^iy = x^jzx^iy = hg,
\]

which proves that \(G \) is abelian. □
5) Consider the additive quotient group $G = \mathbb{Q}/\mathbb{Z}$.

(a) Show every element of G can be represented by $r + \mathbb{Z}$ where $r \in \mathbb{Q}$ and $0 \leq r < 1$.

Let $q \in \mathbb{Q}$. The coset $q + \mathbb{Z}$ is equal to $r + \mathbb{Z}$ for $r = q - n$ where n is the greatest integer less than or equal to q (called the floor of q) since $q - r$ is an integer. Hence every element of G can be represented by $r + \mathbb{Z}$ where $r \in \mathbb{Q}$ and $0 \leq r < 1$.

(b) Show that every element of G has finite order, but there is no upper bound on the orders of all the elements.

Let $r + \mathbb{Z} \in G$. Then $r = p/q$ for some integers p, q such that $q \neq 0$. Then $q(r + \mathbb{Z}) = \mathbb{Z}$ implies the order of $r + \mathbb{Z}$ is finite (a divisor of q). To yield a contradiction, suppose there exists a real number $B > 0$ such that the order of $q + \mathbb{Z}$ is less than B for any $q \in \mathbb{Q}$. Let n be an integer such that $n > B$. Then $1/n < 1/B$ implies that the order is more than B, which is a contradiction. So there is no upper bound on the orders of the cosets.

6) Let G, G' be groups with normal subgroups H, H' respectively. Show that if $\phi : G \to G'$ is a homomorphism and $\phi(H) \subseteq H'$ then $\phi_* : G/H \to G'/H'$ given by $\phi_*(gH) = \phi(g)H'$ is a homomorphism.

Proof: Let $\phi : G \to G'$ be a homomorphism and assume $\phi(H) \subseteq H'$. Define $\phi_* : G/H \to G'/H'$ by $\phi_*(gH) = \phi(g)H'$. First let’s show ϕ_* is well-defined. Let’s make sure the definition does not depend on the choice of coset representative. Suppose $a, b \in G$ and $aH = bH$. Then $a^{-1}b \in H$ and

$$\phi_*(aH) = \phi(a)H' = \phi(a)\phi(a^{-1}b)H' = \phi(aa^{-1}b)H' = \phi(b)H' = \phi_*(bH)$$

since $\phi(a^{-1}b) \in H'$ as $\phi(H) \subseteq H'$. So ϕ_* is well-defined.

Now let $gH, kH \in G/H$. Consider that

$$\phi_*(gHkH) = \phi_*(gkH) = \phi(gk)H' = \phi(g)\phi(k)H' = \phi(g)H' \phi(k)H' = \phi(gH)\phi(kH).$$

Thus ϕ_* is a homomorphism.

7) We know that \mathbb{C}^*, \mathbb{R}^+ and $U = \{z \in \mathbb{C} : |z| = 1\}$ are groups under multiplication. Prove that $\mathbb{C}^*/U \cong \mathbb{R}^+$.

Hint: Use the First Isomorphism Theorem!

Proof: Let $\phi : \mathbb{C}^* \to \mathbb{R}^+$ be given by $\phi(z) = |z|$ (where for $z = a + bi$ with $a, b \in \mathbb{R}$, $|z| = \sqrt{a^2 + b^2}$). Let $z_1, z_2 \in \mathbb{C}^*$ so $z_1 = a + bi$ and $z_2 = c + di$ for some $a, b, c, d \in \mathbb{R}$ where $i = \sqrt{-1}$. $|z_1z_2|^2 = |z_1|^2|z_2|^2 = (a^2 + b^2)(c^2 + d^2) = a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2 = a^2(c^2 + d^2) + b^2(c^2 + d^2) = (a^2 + b^2)(c^2 + d^2) = |z_1|^2|z_2|^2$. So $|z_1z_2| = |z_1||z_2|$. Hence ϕ is a homomorphism. Let $r \in \mathbb{R}^+$. Then $r \in \mathbb{C}^*$ and $\phi(r) = r$. So ϕ is onto. The kernel is $\ker(\phi) = \{z \in \mathbb{C}^* : \phi(z) = 1\} = \{z \in \mathbb{C}^* : |z| = 1\} = U$. Therefore, by the First Isomorphism Theorem, $\mathbb{C}^*/U \cong \mathbb{R}^+$. □
Let G be a group and $H \leq G$. The normalizer of H in G is $N(H) = \{ g \in G | ghg^{-1} = H \}$.

Prove the following:

(a) $N(H) \leq G$.

Proof: Clearly $N(H) \subseteq G$ and $e \in N(H)$ as $eHe^{-1} = eHe = H$. Let $a, b \in N(H)$. Then $aHa^{-1} = H$ and $bHb^{-1} = H$, which also implies $b^{-1}Hb = H$. Let’s show that $ab^{-1} \in N(H)$:

$$(ab^{-1})H(ab^{-1})^{-1} = ab^{-1}Hba^{-1} = aHa^{-1} = H.$$

So $ab^{-1} \in N(H)$. Thus $N(H)$ is a subgroup of G. □

(b) H is a normal subgroup of $N(H)$.

Hint: First show that $H \subseteq N(H)$.

Proof: Let $x \in H$. Then for all $h \in H$ we have that $xhx^{-1} \in H$ as H is a subgroup. So $xHx^{-1} \subseteq H$. We also have that for all $h \in H$, $h = x(x^{-1}hx)x^{-1}$ is in xHx^{-1} since $x^{-1}hx \in H$ as H is a subgroup. Thus $H \subseteq xHx^{-1}$. So $xHx^{-1} = H$. Hence $x \in N(H)$. Thus $H \subseteq N(H)$ implying $H \leq N(H)$. By definition, $nHn^{-1} = H$ for all $n \in N(H)$, so $H \leq N(H)$. □

(c) If H is a normal subgroup of $K \leq G$ then $K \leq N(H)$. Conclude that $N(H)$ is the largest subgroup of G in which H is normal.

Proof: Assume $H \leq K$ and $K \leq G$. Let $k \in K$. Then $kHk^{-1} = H$ since H is normal in K. Thus $k \in N(H)$. Hence $K \subseteq N(H)$. Therefore $N(H)$ is the largest subgroup of G in which H is normal. □

(d) H is a normal subgroup of G iff $G = N(H)$.

Proof: Assume $H \leq G$. Applying part (c) we get $G \leq N(H)$ and hence $N(H) = G$. Now assume $G = N(H)$. Just apply part (b) to get $N \leq G$. □
One presentation of the Dihedral Group of order 8 (symmetries of a square) is $D_8 = \{ \text{Id}, \sigma, \sigma^2, \sigma^3, \tau, \tau \sigma, \tau \sigma^2, \tau \sigma^3 \}$ with the relations $\sigma^4 = \text{Id}$, $\tau^2 = \text{Id}$ and $\sigma \tau = \tau \sigma^3$.

(9) Consider the subgroup $H = \langle \tau \rangle$ of D_8. Determine $N(H)$, the normalizer of H in D_8.

We already know that H is in $N(H)$. Let’s consider element not in H. $\sigma \tau \sigma^{-1} = \sigma \tau \sigma^3 = \tau \sigma^3 = \tau \sigma^2$ so $\sigma \not\in N(H)$. A similar analysis shows that σ^3 is not in $N(H)$. $\sigma^2 \tau (\sigma^2)^{-1} = \sigma \tau \sigma^2 = \sigma \tau \sigma = \tau$ implies $\sigma^2 \in N(H)$. Then $\tau \sigma^2 \in N(H)$ as $N(H)$ is a subgroup. At that point we know $N(H)$ is a group of order 4 and have the 4 elements. That is enough to conclude that $N(H) = \{ \text{Id}, \sigma^2, \tau, \tau \sigma^2 \}$.

(10) Let G be a group and $a, b \in G$ and assume b is NOT the identity element.

(a) Show that if $aba^{-1} = b^i$ for some $i \in \mathbb{N}$ then $a^r ba^{-r} = b^{ir}$ for all $r \in \mathbb{N}$.

Hint: Use induction!

Proof: Assume $aba^{-1} = b^i$ for some $i \in \mathbb{N}$. We shall use induction on r. Clearly $a^r ba^{-r} = b^{ir}$ holds for $r = 1$. Suppose $r \in \mathbb{N}$ and $a^r ba^{-r} = b^{ir}$. Then

$$a^{r+1}ba^{-(r+1)} = a(a^r ba^{-r})a^{-1} = a(b^{ir})a^{-1} = (aba^{-1})(aba^{-1}) \cdots (aba^{-1}) = b^{ir} \cdots b^{i},$$

where there are i^r factors. Thus $a^{r+1}ba^{-(r+1)} = (b^i)^{ir} = b^{ir+1}$, completing the proof by induction □

(b) If the order of a is 5 and $aba^{-1} = b^2$ then determine the order of b.

Since the order of a is 5, $a^5 = a^{-5} = e$ where e is the identity of G. So by the previous part of this exercise, we have that $b = a^5ba^{-5} = b^{25} = b^{32}$. By cancelation we get $b^{31} = e$. So the order of b is a divisor of 31, which are 1 and 31. Since $b \neq e$, the order of b is equal to 31.