Note: A random subset of these problems will be graded for credit.

(1) Recall that for an extension field E of a field F, an element $a \in E$ is algebraic over F if it is a root of some polynomial $f(x) \in F[X]$. Furthermore, the degree of an element $a \in E$ that is algebraic over F is the degree of a polynomial of minimal degree such that a is a root of the polynomial.

(a) Show $\sqrt{2} + \sqrt{3}$ algebraic over \mathbb{Q}. Find its degree over \mathbb{Q}. Prove your answer.

Proof: Consider that $(\sqrt{2} + \sqrt{3})^2 = 5 + 2\sqrt{6}$ and hence
$$6 = (\sqrt{6})^2 = (0.5[(\sqrt{2} + \sqrt{3})^2 - 5])^2.$$Thus for $\alpha = \sqrt{2} + \sqrt{3}$ we get that $6 = (1/4)(\alpha^2 - 5)^2$ or equivalently,
$$24 = \alpha^4 - 10\alpha^2 + 25.$$So for
$$f(x) = x^4 - 10x^2 + 1,$$it follows that $f(\sqrt{2} + \sqrt{3}) = 0$. So $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} of degree at most 4. Now let’s show the degree is 4. We do this by showing that $\sqrt{2} + \sqrt{3}$ is not the root of lower degree non-constant polynomial in $\mathbb{Q}[X]$.

Suppose $\sqrt{2} + \sqrt{3}$ is a root of a lower degree non-constant polynomial in $\mathbb{Q}[X]$. Let $g(x) \in \mathbb{Q}[X]$ be of minimal degree between 1 and 3 such that $g(\sqrt{2} + \sqrt{3}) = 0$. WLOG assume g is monic. By the division algorithm, there exists unique polynomials $q(x), r(x) \in \mathbb{Q}[X]$ such that $f(x) = q(x)g(x) + r(x)$ and the degree of $r(x)$ is less than that of $g(x)$. Then since $f(\sqrt{2} + \sqrt{3}) = 0$ and $g(\sqrt{2} + \sqrt{3}) = 0$ it follows that $r(\sqrt{2} + \sqrt{3}) = 0$. By the minimality of the degree of $g(x)$ this implies that $r(x)$ is of degree zero, that is, $r(x) = C \in \mathbb{Q}$. But then $C = 0$. So $f(x) = q(x)g(x)$.

Hence $f(x)$ is reducible, as either a product of linear times a cubic, or the product of two quadratics. Suppose $f(x)$ is the product of a linear poly. and a cubic poly. WLOG assume $x - r$ for $r \in \mathbb{Q}$ is the linear poly. That would make r a root of $f(x)$ and hence would have to be an integer factor of $f(0) = 1$. So $r = \pm 1$. But $f(\pm 1) = -8 \neq 0$. Now suppose $g(x)$ and $g(x)$ are quadratic. WLOG assume $g(x) = x^2 + ax + b$ for some $a, b \in \mathbb{Q}$. Then since $g(\sqrt{2} + \sqrt{3}) = 0$ we get
$$(\sqrt{2} + \sqrt{3})^2 + a(\sqrt{2} + \sqrt{3}) + b = (5 + b) + 2\sqrt{6} + a\sqrt{2} + a\sqrt{3},$$which cannot be 0 as there is no $a, b \in \mathbb{Q}$ such that the above is 0 (as 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6}$ are linearly independent over \mathbb{Q}).

(b) Show $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a simple extension field of \mathbb{Q}.

Proof: Clearly $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. We try to show the reverse. Consider that
$$\frac{1}{\sqrt{2} + \sqrt{3}} = \sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$But then $\sqrt{3} = (1/2) [(\sqrt{2} + \sqrt{3}) + (\sqrt{3} - \sqrt{2})]$ and $\sqrt{2} = (1/2) [(\sqrt{2} + \sqrt{3}) - (\sqrt{3} - \sqrt{2})]$. So $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ is a simple extension field of \mathbb{Q}.
(2) Let $n \in \mathbb{N}$. Let E be an extension field of F that as a vector space over F has dimension n. Let $a \in E$. Prove that a is algebraic of degree at most n over F.

Proof: To yield a contradiction suppose a either has degree more than n over F or is transcendental over F. Then the only solution to $b_0 + b_1a + b_2a^2 + \cdots + b_na^n = 0$ where $b_0, b_1, b_2, \ldots, b_n \in F$ is the trivial solution $b_0 = b_1 = b_2 = \cdots = b_n = 0$, as otherwise a would be the root of $f(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n \in F[x]$. That implies that $\{1, a, a^2, \ldots, a^n\}$ is linearly independent and thus spans a subspace of E of dimension $(n + 1)$ over F. This contradicts that the dimension of E is n. So a is algebraic of degree at most n over F. □

(3) Let $n \in \mathbb{N}$, $n \geq 2$, and $q \in \mathbb{N}$ be a positive integer power of a prime number. Let \mathbb{F}_q be a field with q elements.

(a) How many non-zero vectors does $(\mathbb{F}_q)^n$ contain?

q^n total vectors, so $q^n - 1$.

(b) Let $x \in (\mathbb{F}_q)^n$ be a non-zero vector. How many vectors are there in $(\mathbb{F}_q)^n$ that DO NOT lie in the Span(x)?

q vectors in that span, so $q^n - q$.

(c) Let $x, y \in (\mathbb{F}_q)^n$ be a pair of linearly independent vectors. How many vectors are there in $(\mathbb{F}_q)^n$ that DO NOT lie in the Span(x, y)?

q^2 vectors in that span, so $q^n - q^2$.

(d) Consider the group $G = \text{GL}_n(\mathbb{F}_q)$ consisting of invertible $n \times n$ matrices over a finite field with q elements. Find the order of G.

Hint: Each column (after the first) of an invertible matrix must not lie in the span of the previous columns.

It would be $(q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1}) = \prod_{i=0}^{n-1} (q^n - q^i)$.
(4) We know that \(f(x) = x^3 + x^2 + 1 \) is irreducible over \(\mathbb{Z}_2 \). Let \(\alpha \) be a root of \(f(x) \) is some extension field \(E \) of \(\mathbb{Z}_2 \). Show that \(f(x) \) factors into the product of 3 linear factors in \(\mathbb{Z}_2(\alpha) \).

Hint: Every element of \(\mathbb{Z}_2(\alpha) \) looks like \(a_0 + a_1\alpha + a_2\alpha^2 \) where \(a_0, a_1, a_2 \in \mathbb{Z}_2 \). Divide \(x^3 + x^2 + 1 \) by \(x - \alpha \) using long division and show that the quadratic quotient has a root in \(\mathbb{Z}_2(\alpha) \).

Proof: By long division \(f(x) = (x + \alpha)g(x) \) where \(g(x) = x^2 + (\alpha + 1)x + (\alpha^2 + \alpha) \).

It suffices to show that \(g \) has a root in the field \(E \). Consider

\[
g(\alpha^2) = (\alpha^2)^2 + (\alpha + 1)(\alpha^2) + (\alpha^2 + \alpha) = \alpha^4 + \alpha^3 + \alpha = \alpha(\alpha^3 + \alpha^2 + 1) = 0 \quad □
\]

Incidentally, \(f(x) = (x + \alpha)(x + \alpha^2)(x + \alpha^2 + \alpha + 1) \).

(5) Let \(F \) be a field. Let \(i, j, k \) satisfy \(i^2 = j^2 = k^2 = -1 \) and \(ij = k, jk = i, ki = j \), \(ji = -k, kj = -i \) and \(ik = -j \). Then assume that for any \(a \in F \), \(ab = ba \) for all \(b \in \{i, j, k\} \). Let \(Q_F = \{a + bi + cj + dk | a, b, c, d \in F \} \). Addition in \(Q_F \) is done by combining “like” terms (involving the linearly independent quantities \(1, i, j, k \)) and multiplication is done with the distributive property and the rules given for multiplying \(i, j, k \) amongst themselves and with field elements. It turns out that \(Q_F \) is a noncommutative ring, called the *quaternions*.

(a) Compute \((1 + i + j + 2k)(1 + 2i + 2j + k)\) if \(F \) is of characteristic 3.

\[
(1 + i + j + 2k)(1 + 2i + 2j + k) = 1.
\]

(b) Compute \((1 + i + 2j + 3k)(1 - i - 2j - 3k)\) if \(F \) is of characteristic 0.

\[
(1 + i + 2j + 3k)(1 - i - 2j - 3k) = 15.
\]
(c) Show that \(\phi : Q_F \to M_2(\mathbb{C}) \) given by the rule below is a monomorphism.

\[
\phi(a + bi + cj + dk) = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} + d \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.
\]

Proof: To show that \(\phi \) is a homomorphism, since it is obvious that \(\phi(a + bi + cj + dk) = a\phi(1) + b\phi(i) + c\phi(j) + d\phi(k) \), it suffices to show that \(\phi(2^\beta) = \phi(2^\Gamma) = \phi(k^2) = \phi(-1) = -\phi(1) \). \(\phi(ij) = \phi(i)\phi(j) \), \(\phi(ji) = \phi(j)\phi(i) \), \(\phi(ik) = \phi(i)\phi(k) \), \(\phi(ki) = \phi(k)\phi(i) \), \(\phi(jk) = \phi(j)\phi(k) \), and \(\phi(ji) = \phi(j)\phi(i) \).

By the definition of \(\phi \), \(\phi(1) = I_2 \). We see that

\[
\phi(ij) = \phi(k) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \phi(i)\phi(j).
\]

Also

\[
\phi(ji) = \phi(-k) = -\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \phi(j)\phi(i).
\]

Also

\[
\phi(ij) = \phi(\alpha) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \phi(i)\phi(k).
\]

Also

\[
\phi(jk) = \phi(i) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \phi(j)\phi(k).
\]

Finally

\[
\phi(kj) = \phi(-i) = -\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \phi(j)\phi(k).
\]

Now it only remains to show that ker(\(\phi \)) is \{0\}. For that it suffices to show that the only solution to \(a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} + d \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = 0 \) is the trivial solution (in other terms, that the matrices are linearly independent).

From that equation we get 4 linear equations: \(a + di = 0 \), \(b + ci = 0 \), \(-b + ci = 0 \), and \(a - di = 0 \). Adding the first and last equations yields \(a = 0 \) and hence \(d = 0 \). Adding the other two yields \(c = 0 \) and hence \(b = 0 \). So \(\phi \) is a monomorphism. \(\Box \)

(d) If the characteristic of \(F \) is 5 then show that \(1 + 2i + 3j - k \) is a zero divisor in \(Q_F \).

\[
(1 + 2i + 3j - k)(2 + i + j + 3k) = 0.
\]

(6) Let \(E \) be an extension field of \(F \). Let \(\alpha \in E \) be algebraic of odd degree over \(F \). Show that \(\alpha^2 \) is algebraic of odd degree over \(F \) and \(E(\alpha) = F(\alpha^2) \).

Proof: Let \(F \) be a field and \(E \) be an extension field of \(F \). Let \(\alpha \in E \) be algebraic of odd degree over \(F \). Then \([E(\alpha) : F] \) is odd. Clearly \(F(\alpha^2) \subseteq F(\alpha) \). To yield a contradiction suppose \(F(\alpha) \not\subseteq F(\alpha^2) \). In particular, that means \(\alpha \not\in F(\alpha^2) \). Since \(\alpha \) is a root of \(x^2 - \alpha^2 \in F(\alpha^2)[x] \) it follows that \([F(\alpha) : F(\alpha^2)] = 2 \). But then \([F(\alpha) : F] = [F(\alpha) : F(\alpha^2)] [F(\alpha^2) : F] = 2 [F(\alpha^2) : F] \), implying that \([F(\alpha) : F] \) is even, which is contradiction. Hence, \(F(\alpha) \subseteq F(\alpha^2) \), and thus \(F(\alpha) = F(\alpha^2) \). \(\Box \)
(7) Let E be an extension field of a field F.

(a) If $[E : F]$ is a prime, show that $E = F(\alpha)$ for all $\alpha \in E \setminus F$.

Proof: Suppose $[E : F]$ is prime. Let $\alpha \in E \setminus F$. Then $E \geq F(\alpha) > F$. Since $[E : F] = [E : F(\alpha)][F(\alpha) : F]$ is prime and $[F(\alpha) : F] > 1$ it follows that $[E : F] = [F(\alpha) : F]$ and $[E : F(\alpha)] = 1$, which implies that $E = F(\alpha)$ □

(b) Show that if $a, b \in E$ are algebraic over F of degrees m, n respectively, and m, n are relatively prime then $[F(a, b) : F] = mn$.

Proof: Let F be a field and E be an extension field. Let $a, b \in E$ be algebraic over F of degrees m, n respectively, where m, n are relatively prime. Then $[F(a) : F] = m$ and $[F(b) : F] = n$. Then since $[F(a, b) : F] = [F(a, b) : F(a)][F(a) : F] = [F(a, b) : F(a)][F(a) : F]$, it follows that $[F(a, b) : F]$ is divisible by m and n, and hence mn since m and n are relatively prime. So $[F(a, b) : F] \geq mn$. Since a is algebraic of degree m over F, it is algebraic of degree at most m over $F(b)$. Hence $[F(a, b) : F] = [F(a, b) : F(b)][F(b) : F] \leq mn$. So we are done, as it must be the case that $[F(a, b) : F] = mn$ □

(8) Show that if F is a finite field of odd characteristic then F is not algebraically closed.

Proof: Let F be a finite field of odd characteristic. Then $-1 \neq 1$. But $(-1)^2 = 1^2$, so \{$x^2 | x \in F$\} is a subset of F with at most $|F| - 1$ elements. Thus there exists an element $\alpha \in F$ such that $\alpha^2 \neq \alpha$ for all $a \in F$. Hence for $f(x) = x^2 - \alpha \in F[X]$ we have that $f(x)$ has no root in F. Hence F is not algebraically closed □

(9) Let $p \in \mathbb{N}$ be a prime. Construct a field of order p^2.

Proof: Suppose $p = 2$. $f(x) = x^2 + x + 1$ is irreducible over \mathbb{Z}_2. So $I = (f(x))$ is a maximal ideal of $\mathbb{Z}_2[x]$ and thus $F = \mathbb{Z}_2[x]/I$ is a field. Every element in F is expressible in the form $ax + b + I$, so there are $p^2 = 4$ elements in F. Now suppose p is an odd prime. Then by the result of the previous exercise, $\exists \alpha \in \mathbb{Z}_p$ such that $f(x) = x^2 - \alpha$ is irreducible over \mathbb{Z}_p. So $I = (f(x))$ is a maximal ideal of $\mathbb{Z}_p[x]$ and thus $F = \mathbb{Z}_p[x]/I$ is a field. Every element in F is expressible in the form $ax + b + I$, so there are p^2 elements in F □

(10) Let $p \in \mathbb{N}$ be a prime and F be a finite field of characteristic p. Show that every element of F is algebraic over the subfield \mathbb{Z}_p.

Proof: Clearly 0 is algebraic over \mathbb{Z}_p as it’s a root of $x \in \mathbb{Z}_p[x]$. Let $\alpha \in F^\ast$. Since F is a finite field, F^\ast is a finite group under multiplication. So the order of α under multiplication is finite (and a divisor of $|F^\ast|$). Let $k \in \mathbb{N}$ be the order of α. Then $\alpha^k = 1$, which implies that α is a root of $f(x) = x^k - 1 \in \mathbb{Z}_p[x]$. Hence every element of F is algebraic over \mathbb{Z}_p □