(1) Give an example of a group \(G \) for which \(H = \{ a \in G | a^2 = e \} \) is NOT a subgroup.

Consider \(S_3 = \{ \text{Id}, (12), (13), (23), (123), (132) \} \). Then \(H = \{ a \in S_3 | a^2 = e \} \) would be the set \(\{ \text{Id}, (12), (13), (23) \} \), which is not a group because the operation isn’t closed on this set. Just consider that \((12)(13) = (123) \) which is not in the set (here we are using the convention that the elements act on the right).

(2) Prove that if \(G \) is a non-trivial group and it has no non-trivial proper subgroups then it is cyclic and of prime order.

Proof: Let \(G \) be a non-trivial group with no non-trivial proper subgroups. Let \(g \in G \) be a non-identity element. Consider \(\langle g \rangle \), the cyclic subgroup generated by \(g \).

Since \(G \) has no non-trivial proper subgroups, \(G = \langle g \rangle \). So \(G \) is cyclic. Let \(\ell > 1 \) be the order of \(G \). Suppose it is composite, that is, there exists integers \(m > 1 \) and \(n > 1 \) such that \(\ell = mn \). Then \(g^m \) would generate a cyclic subgroup of order \(n \), which would be a non-trivial proper subgroup. That contradiction implies \(\ell \) is prime. \(\square \)

(3) If \(H, K \) are subgroups of \(G \) and \(hKh^{-1} \subseteq K \) for all \(h \in H \) then \(HK \leq G \) (that is, \(HK \) is a subgroup).

Proof: Let \(G \) be a group and \(H, K \) be subgroups of \(G \) such that \(hKh^{-1} \subseteq K \) for all \(h \in H \). Obviously \(HK \neq \emptyset \). Let \(x, y \in HK \). Then \(x = h_1k_1 \) and \(y = h_2k_2 \) for some \(h_1, h_2 \in H \) and \(k_1, k_2 \in K \). Let’s attempt (1-step subgroup test) to show that \(xy^{-1} \in HK \). Well,

\[
xy^{-1} = h_1k_1k_2^{-1}h_2^{-1} = (h_1h_2^{-1})(h_2k_1k_2^{-1}h_2^{-1}) \in HK,
\]

since \(h_1h_2^{-1} \in H \) and \(h_2k_1k_2^{-1}h_2^{-1} \in K \) using that \(hKh^{-1} \subseteq K \) for all \(h \in H \). \(\square \)

(4) Let \(G \) be a group and \(H \leq G \). For \(x \in G \) we have \(Hx = \{ hx | h \in H \} \) (called a right-coset of \(H \) in \(G \)). Show that for all \(a, b \in G \) either \(Ha = Hb \) or \(Ha \cap Hb = \emptyset \).

Proof: Let \(a, b \in G \). Suppose \(Ha \cap Hb \neq \emptyset \). So there exists \(h_1, h_2 \in H \) such that \(h_1a = h_2b \). But then \(a = h_1^{-1}h_2b \). Let \(x \in Ha \). Then \(x = ha \) for some \(h \in H \). By substitution, \(x = hh_1^{-1}h_2b \in Hb \). So \(Ha \subseteq Hb \). A similar argument, using \(b = h_2^{-1}h_1a \) yields \(Hb \subseteq Ha \). Hence \(Ha = Hb \). So either \(Ha = Hb \) or \(Ha \cap Hb = \emptyset \). \(\square \)
(5) Let $n \geq 2$ be an integer. For each set of matrices, determine if it is a subgroup of the general linear group, $GL_n = \{ A \in M_n | \det(A) \neq 0 \}$ (invertible $n \times n$ matrices). Justify your answers.

(a) Diagonal $n \times n$ matrices with no 0s on the main diagonal.

I_n is a $n \times n$ diagonal matrix with no 0s on the main diagonal. Let D_1, D_2 be $n \times n$ diagonal matrices with 0s on the main diagonal. Then they are elements of GL_n as their determinants (product of the diagonal entries) are non-zero. We know (from linear algebra) that the product of two diagonal matrices is once again a diagonal matrix (where each main diagonal entry is the product of the two corresponding diagonal entries). Let the main diagonal of D_1 be $\lambda_1, \lambda_2, ..., \lambda_n$ and the main diagonal of D_2 be $\lambda'_1, \lambda'_2, ..., \lambda'_n$. Since $\lambda'_i \neq 0$ for $i = 1, 2, ..., n$ we have that D_2^{-1} is the diagonal matrix with main diagonal $1/\lambda'_1, 1/\lambda'_2, ..., 1/\lambda'_n$, and hence has no 0s on the main diagonal. Then $D_1D_2^{-1}$ is a diagonal matrix with main diagonal $\lambda_1/\lambda'_1, \lambda_2/\lambda'_2, ..., \lambda_n/\lambda'_n$ and has no 0s on the main diagonal since $\lambda_i \neq 0$ for $i = 1, 2, ..., n$. Therefore diagonal $n \times n$ matrices with no 0s on the main diagonal form a subgroup of GL_n.

(b) All $n \times n$ matrices whose determinant is positive.

I_n is an $n \times n$ matrix with a positive determinant as $\det(I_n) = 1$. Let A, B be $n \times n$ matrices with positive determinants. Clearly they are elements of GL_n. We know (from linear algebra) that $\det(B^{-1}) = 1/\det(B)$. Since $\det(B) > 0$ it follows that $\det(B^{-1}) > 0$. Therefore, $\det(AB^{-1}) = (\det(A)) (\det(B^{-1}))$ is positive since $\det(A) > 0$ and $\det(B^{-1}) > 0$. Thus $n \times n$ matrix with a positive determinant form a subgroup of GL_n.

(6) Let G be a group and $g \in G$. Show that $\phi_g : G \to G$ given by $\phi_g(a) = gag^{-1}$ is an isomorphism.

Proof: Let $\phi_g : G \to G$ be given by $\phi_g(a) = gag^{-1}$. Let $a, b \in G$. Suppose $\phi_g(a) = \phi_g(b)$. Then $gag^{-1} = bgb^{-1}$. By left- and right-cancelation it follows that $a = b$. So ϕ_g is $1 - 1$. Let $c \in G$. Then $g^{-1}cg \in G$ and $\phi_g(g^{-1}cg) = g(g^{-1}cg)g^{-1}$ which simplifies to c. Hence ϕ_g is onto, and thus a bijection. Furthermore, $\phi_g(ab) = g(ab)g^{-1} = ga(g^{-1}g)bg^{-1} = (gag^{-1})(gbg^{-1}) = \phi_g(a)\phi_g(b)$, showing that ϕ_g is a homomorphism. Therefore ϕ_g is an isomorphism. □

(7) Let G be a group. Prove that the map $sq : G \to G$ given by $sq(g) = g^2$ is a homomorphism if and only if G is abelian.

Proof: Let $sq : G \to G$ given by $sq(g) = g^2$. Suppose sq is a homomorphism. Let $g, h \in G$. Then $sq(gh) = (gh)^2$ and $sq(gh) = sq(g)sq(h) = g^2h^2$. So $ghgh = gghh$, which implies $h = gh$ by left multiplication by g^2 and right multiplication by h^{-1}. So G is abelian. Now suppose that G is abelian. Then $sq(gh) = (gh)^2 = ghgh = gghh = g^2h^2 = sq(g)sq(h)$. So sq is a homomorphism. □