Show all work clearly. If a question asks for an explanation, justify your answers using complete sentences. You have 40 minutes to take this 10 point quiz. Good luck!

1. (2 points) Determine $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ for the following rational function. Then give the horizontal asymptote of f (if any).

$$f(x) = \frac{6x^2 - 9x + 8}{3x^2 + 2}.$$

$$\lim_{x \to \infty} \frac{6x^2 - 9x + 8}{3x^2} = \lim_{x \to \infty} \left(\frac{6 - \frac{9}{x} + \frac{8}{x^2}}{3 + \frac{2}{x^2}} \right) = 2$$

$$\lim_{x \to -\infty} \frac{6x^2 - 9x + 8}{3x^2} = \lim_{x \to -\infty} \left(\frac{6 - \frac{9}{x} + \frac{8}{x^2}}{3 + \frac{2}{x^2}} \right) = 2$$

The horizontal asymptote of f is $y = 2$.

2. (3 points) Determine whether the following function is continuous at $x = 1$. Use the continuity checklist to justify your answer.

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ \frac{1}{3} & \text{if } x = 1 \end{cases}$$

$$f(1) \text{ is defined, but }$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2 \neq \frac{1}{3}$$

So $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \neq f(1)$, so f is not continuous at $x = 1$.
3. (8 points) Let \(a \) be a real number and let

\[
g(x) = \begin{cases}
 x^2 + x & \text{if } x < 1 \\
 a & \text{if } x = 1 \\
 3x + 5 & \text{if } x > 1
\end{cases}
\]

(a) Determine the value of \(a \) for which \(g \) is continuous from the left at \(1 \). [Hint: what is \(\lim_{x \to 1^-} g(x) \)?]

(b) Determine the value of \(a \) for which \(g \) is continuous from the right at \(1 \). [Hint: what is \(\lim_{x \to 1^+} g(x) \)?]

(c) Is there a value of \(a \) for which \(g \) is continuous at \(1 \)? Explain.

\[
\begin{align*}
&\text{a) } \lim_{x \to 1^-} g(x) = \lim_{x \to 1^-} x^2 + x = 2, \text{ so take } a = 2. \\
&\text{b) } \lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} 3x + 5 = 8, \text{ so take } a = 8. \\
&\text{c) No value exists, since } \lim_{x \to 1} g(x) \text{ DNE.}
\end{align*}
\]

4. (9 points) Let \(f(x) = 3x^2 + 2x - 10 \) and let \(a = 1 \).

(a) Find the derivative function \(f' \) for \(f \). Must use \(\lim_{h \to 0} \) def.!

(b) Find an equation of the line tangent to the graph at \(f \) at \((a, f(a)) \) for the given value of \(a \).

(c) Graph \(f \) and the tangent line.

\[
\begin{align*}
&\text{a) } \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h \to 0} \frac{3(x+h)^2 + 2(x+h) - 10 - 3x^2 - 2x + 10}{h} \\
&\quad = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 + 2x + 2h - 10 - 3x^2 - 2x + 10}{h} \\
&\quad = \lim_{h \to 0} \frac{6xh + 3h^2 + 2h}{h} = \lim_{h \to 0} (6x + 3h + 2) = 6x + 2. \\
&\quad \text{So } f'(x) = 6x + 2. \\
&\text{b) If } a = 1, \text{ then } f(1) = -5, \text{ hence } f'(1) = 8 \text{ and by the point-slope formula, } y + 5 = 8(x - 1). \\
&\quad \text{Thus, } y = 8x - 13 \text{ is the equation.}
\end{align*}
\]