Using Importance Flooding to Identify Interesting Patterns of Criminal Activity

Criminal Activity Networks (CAN) are Node-Link Representations of Investigative Intelligence
- Widely accepted investigative technique
- Visualizable for Understanding
- Shareable Despite Policy and Privacy Concerns
- Analyzable Using Graph-based Techniques

Design Goals For A CAN Methodology
- Incorporate domain-appropriate heuristics
- Combine shared data with investigation specific data
- Tolerate missing and ambiguous data
- Be target focused

Link Chart Challenges
- Current off-the-shelf software lacks criminal database connectivity
- Assignments are distributed
- “Fishing” in available data for potential criminals is discouraged

Cross-Jurisdictional Integration Challenges
- Different schemas and classification taxonomies
- Entity matching
- Privacy and security policies need to protect subpoenaed records, sensitive details, and private personal information in local agency records

Path-Based Importance Heuristics
- Simple activity-based group rules identify people who play a particular role, in a particular kind of incident, in a particular date range
- Multi-group rules identify people who have participated in two or more specified associations: a link-node-link network path.
- Path rules identify individuals involved in specified short network paths. For example a person who is in the fraud group, connected in a recent suspect-to-suspect association to someone in the drug sales group, connected in a recent suspect-to-suspect association to a member of the aggrieved assault group. Rules may be node-link-node-link-node or node-link-node.

Experimentation
- Several methodologies were compared:
 - BFS randomly selected direct associates
 - Closest Associate used association closeness rules
 - Importance Flooding combined path-based importance and spreading activation

The Algorithm
- Assign link weights
- Estimate initial importance using activity records
- Iteratively pass importance along associational links
- Domain-Appropriate, User-Specified Weights
- Weight can be adjusted based on experience
- Rules are stored in XML files separate from the data
- Two types of weights:
 - Link (relationship) weights support spreading activation
 - Initial importance weights for nodes in the network

Conclusions, Implications, and Future Directions

Conclusion:
- Spreading activation and path-based importance rules seemed to improve results

Implications:
- Computer-supported selection techniques could improve analyst efficiency
- Intelligence analysis tools might benefit from spreading activation modules
- Promising association network analysis methodologies can be developed despite imprecise relations, uncertain entity mappings, inconsistent classification, and heuristic analysis rules

Future Directions:
- Can users effectively express heuristics? Will the findings be consistent in a larger study?
- Use importance flooding with concept maps and networks of biomedical relationships

Acknowledgement

This work was supported in part by the NSF, Knowledge Discovery and Dissemination (KDD) # 9883304

NSF, ITR: “COPLINK Center for Intelligence and Security Informatics Research - A Crime Data Mining Approach to Developing Border Safe Research”

We are also grateful to Kathy Martinjak, Tim Petersen, and Chuck Violette from the Tucson Police Department for their input

Cross-Jurisdictional Law Enforcement Link Charts

- Criminal association networks are useful for:
 - discovering conspiracy,
 - building investigative leads, and
 - illustrating the conspiracy to the jury in a court of law.
- Organized and narcotic crimes can involve hundreds of people, vehicles, and businesses in production, transportation, selling and consumption.

- Creating Investigational Link Charts:
 - Begin with investigational targets
 - Look through incident records for known associates
 - Employ heuristics and judgment to select interesting additions
 - Use drawing tools to depict the results

- Link Chart Challenges:
 - Current off-the-shelf software lacks criminal database connectivity
 - Drawing a link chart is a tedious, manual, and time-consuming (expensive) process - tools filter but they do not analyze
 - Assignments are distributed
 - Investigations cross jurisdictional boundaries
 - Some investigational data can’t be shared
 - “Fishing” in available data for potential criminals is discouraged

Thus link charts are used in only a few cases and the scope of analysis is limited

Cross-Jurisdictional Integration Challenges

- Different schemas and classification taxonomies
- Entity matching
- Privacy and security policies need to protect subpoenaed records, sensitive details, and private personal information in local agency records

CANs capture associations but omit sensitive details to provide value despite ambiguous data representations

Importance Flooding

- Importance Flooding aims to support applications with:
 - Networks of associations between identifiable entities
 - Ambiguously specified relationships
 - Heuristics used by experts to guide analysis
 - Path-based definitions of importance
 - Different queries using different heuristics

- In this link chart the analyst depicted key people involved with methamphetamines and fraud.
- Records came from two jurisdictions.
- Evidence of conspiracy: Leg-breakers, associated with check washers, associated with drug traffickers.

Conclusions, Implications, and Future Directions

Conclusion:
- Spreading activation and path-based importance rules seemed to improve results

Implications:
- Computer-supported selection techniques could improve analyst efficiency
- Intelligence analysis tools might benefit from spreading activation modules
- Promising association network analysis methodologies can be developed despite imprecise relations, uncertain entity mappings, inconsistent classification, and heuristic analysis rules

Future Directions:
- Can users effectively express heuristics? Will the findings be consistent in a larger study?
- Use importance flooding with concept maps and networks of biomedical relationships