1. Consider the linear map
 \[f : \mathbb{R}^3 \to \mathbb{R}^4, \quad f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + 4x_3, 3x_1 + 2x_2 + 4x_3, 5x_2 - 5x_3). \]
 (a) Determine \(\ker(f) \) by finding a basis. What is its dimension?
 (b) Determine \(\text{range}(f) \) by finding a basis. What is its dimension?

2. Determine all values of \(c \) such that the following linear map is bijective (i.e. both injective and surjective):
 \[f : \mathbb{R}^3 \to \mathbb{R}^3, \quad f(x, y, z) = (x + 2y - z, x + (c + 2)y - z, x + 2y + cz). \]

3. Check if each following map is a linear map. If it is, explain why (by verifying the 2 criteria). If it is not, show how one of these criteria is violated.
 (a) \(f : \mathbb{R} \to \mathbb{R}, \quad f(x) = \sin(x). \)
 (b) \(f : \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x, y) = (x^2, y^2). \)
 (c) \(f : \mathbb{R}^3 \to \mathbb{R}^2, \quad f(x, y, z) = (2x + 2y, x - z). \)

4. Let \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) be a linear map such that:
 \[
 f(2, 3, 1) = (1, 0) \\
 f(1, 0, 1) = (2, -1) \\
 f(-1, -2, 0) = (-1, 1)
 \]
 (a) Find the matrix representing \(f \).
 (b) Find \(f(3, 4, 5) \).

5. Let \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) be a linear map.
 (a) Can \(\ker(f) \) be 1-dimensional and \(\text{range}(f) \) be 1-dimensional? If yes, give an example for such \(f \). If not, explain why.
 (b) Can \(\ker(f) \) be 1-dimensional and \(\text{range}(f) \) be 2-dimensional? If yes, give an example for such \(f \). If not, explain why.
 Hint: Use rank-nullity theorem.

6. Consider the following vectors:
 \[
 v_1 = (1, 2, 3) \\
 v_2 = (-1, 3, -1) \\
 v_3 = (0, 2, 1)
 \]
 (a) Check if \(v_1, v_2, v_3 \) form a basis for \(\mathbb{R}^3 \).
(b) Put $S = \{v_1, v_2, v_3\}$. Find the coordinates of vector $v = (2, 1, 0)$ with respect to basis S.
In other words, find c_1, c_2, c_3 such that $v = c_1v_1 + c_2v_2 + c_3v_3$.
Note: one also denotes $[v]_S = (c_1, c_2, c_3)$.