Homework 5
Answer Key

Consider the following subspaces of \(\mathbb{R}^3 \):

\[U = \{ (x_1, x_2, x_3) : x_1 = x_2 + x_3 \} \]
\[V = \{ (x_1, x_2, x_3) : x_1 = x_2 \} \]
\[W = \{ (x_1, x_2, x_3) : x_1 = x_2 = x_3 \} \]

1. Find a basis of the intersection \(U \cap V \). What is the dimension?

Solution: We can write the intersection as a subset of \(\mathbb{R}^3 \) by including the conditions for both \(U \) and \(V \):

\[U \cap V = \{ (x_1, x_2, x_3) : x_1 = x_2 + x_3, \ x_1 = x_2 \} \]
\[= \{ (x_1, x_1, x_1) : x_1 = x_1 + x_1 \} \]
\[= \{ (x_1, 0, 0) : x_1 \in \mathbb{R} \} \]
\[= \{ x_1 (1, 1, 0) : x_1 \in \mathbb{R} \} \]

The set \(B = \{(1,1,0)\} \) spans \(U \cap V \), and since it is a set of only one non-zero element, \(B \) is linearly independent. Therefore \(B \) is a basis for \(U \cap V \) and the dimension is

\[\dim(U \cap V) = 1. \]

2. Find a basis of \(U \cap W \). What is the dimension?

Solution: We can write the intersection as a subset of \(\mathbb{R}^3 \) by including the conditions for both \(U \) and \(W \):

\[U \cap W = \{ (x_1, x_2, x_3) : x_1 = x_2 + x_3, \ x_1 = x_2 = x_3 \} \]
\[= \{ (x_1, x_1, x_1) : x_1 = x_1 + x_1 \} \]
\[= \{ (0,0,0) \} \]

Therefore \(U \cap W \) is the vector space of only the zero element, so a basis for \(U \cap W \) is the empty set \(B = \emptyset \). The dimension of \(U \cap W \) is the size of the empty set:

\[\dim(U \cap V) = 0. \]
3. Show that $U + W = \mathbb{R}^3$.

Solution: We want to show that $U + W$ contains a basis for \mathbb{R}^3. We will start by finding bases for U and W separately.

$$U = \{(x_1, x_2, x_3) : x_1 = x_2 + x_3\}$$
$$= \{(x_2 + x_3, x_2, x_3) : x_2, x_3 \in \mathbb{R}\}$$
$$= \{x_2(1, 1, 0) + x_3(1, 0, 1) : x_2, x_3 \in \mathbb{R}\}$$

and a basis for U is $\{(1, 1, 0), (1, 0, 1)\}$.

$$W = \{(x_1, x_2, x_3) : x_1 = x_2 = x_3\}$$
$$= \{x_1(1, 1, 1) : x_1 \in \mathbb{R}\}$$

and a basis for W is $\{(1, 1, 1)\}$. The union of these two bases is

$$B = \{(1, 1, 0), (1, 0, 1), (1, 1, 1)\}.$$

Since B is the union of a basis for U and a basis for W, that means $\text{span}(B) = U + W$.

We want to check that B is linearly independent (and hence a basis for \mathbb{R}^3). Consider the equation

$$c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Writing this as an augmented matrix and using row reduction gives

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Therefore $c_1 = c_2 = c_3 = 0$, so B is linearly independent. Since \mathbb{R}^3 has dimension 3 and B is a linearly independent subset of \mathbb{R}^3 with 3 elements, B must be a basis for \mathbb{R}^3. Therefore

$$\mathbb{R}^3 = \text{span}(B) = U + W.$$

4. Show that $V + W = V$.

Solution: The only way for this to be true is if W is a subset of V. Notice that any element $(x_1, x_2, x_3) \in \mathbb{R}^3$ in W satisfies $x_1 = x_2$. This is the only condition required for V, so any element of W is also an element of V.

If $v \in V$ and $w \in W$, then $v + w \in V$ since $w \in W \subseteq V$. Therefore

$$V + W = \{v + w : v \in V, w \in W\} \subseteq V.$$

You saw in class that V is always a subset of $V + W$ (just let $w = 0$). Therefore $V + W = V$.
