1. Let \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) be a linear map given by \(f(v) = Av \) where

\[
A = \begin{bmatrix}
3 & -2 & -2 \\
-1 & 4 & 2 \\
2 & -4 & -2
\end{bmatrix}.
\]

Is \(f \) diagonalizable? If it is, express \(V = \mathbb{R}^3 \) as a direct sum of one-dimensional invariant subspaces under \(f \); then find a basis of \(V \) in which \(f \) is represented by a diagonal matrix.

Solution: First find the characteristic polynomial of \(A \):

\[
\text{det}(A - \lambda I) = \begin{vmatrix}
3 - \lambda & -2 & -2 \\
-1 & 4 - \lambda & 2 \\
2 & -4 & -2 - \lambda
\end{vmatrix}
\]

\[
= (3 - \lambda)[(4 - \lambda)(-2 - \lambda) - (2)(-4)]
+ [(-2)(-2 - \lambda) - (-2)(-4)]
+ (2)[(-2)(-2) - (-2)(4 - \lambda)]
\]

\[
= (3 - \lambda)(\lambda^2 - 2\lambda) + (2\lambda - 4) + (2)(-2\lambda + 4)
\]

\[
= (3 - \lambda)(\lambda)(\lambda - 2) + 2(\lambda - 2) - 4(\lambda - 2)
\]

\[
= (\lambda - 2)(3 - \lambda)(\lambda + 2 - 4)
\]

\[
= (\lambda - 2)(\lambda^2 - 3\lambda + 2)
\]

\[
= -\lambda^3 + 2\lambda^2 + \lambda - 2
\]

Setting \(-\lambda^2 + 2\lambda - 1 = 0\) gives eigenvalues \(\lambda = 1 \) and \(\lambda = 2 \).

To see if \(f \) is diagonalizable, we need to check if the direct sum of the eigenspaces is all of \(V \). That is, we need to check if the dimensions of the eigenspaces add up to \(\dim(V) = 4 \).

We now need to find the eigenvectors of \(A \). This means solving the equation

\[(A - \lambda I)v = 0\]

where \(v = (v_1, v_2, v_3) \in V = \mathbb{R}^3 \).

First let \(\lambda = 1 \). The augmented form of the above equation is

\[
\begin{bmatrix}
3 - 1 & -2 & -2 & 0 \\
-1 & 4 - 1 & 2 & 0 \\
2 & -4 & -2 - 1 & 0
\end{bmatrix} \rightarrow \begin{bmatrix}
2 & -2 & -2 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{bmatrix}.
\]

(continued on next page)
Now use row reduction:

\[
\begin{bmatrix}
2 & -2 & -2 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{bmatrix}
\xrightarrow{R_1 \rightarrow R_1}
\begin{bmatrix}
1 & -1 & -1 & 0 \\
-1 & 3 & 2 & 0 \\
2 & -4 & -3 & 0
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
1 & -1 & -1 \\
0 & 2 & 1 \\
0 & -2 & -1
\end{bmatrix}
\xrightarrow{R_2 \rightarrow R_2 + R_1}
\begin{bmatrix}
1 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

This gives the equations

\[
v_1 + v_2 = 0 \\
2v_2 + v_3 = 0
\]

so \(v_1 = -v_2\) and \(v_3 = -2v_2\). The eigenvectors \(v\) can be written as

\[
v = \begin{bmatrix}
-v_2 \\
v_2 \\
-2v_2
\end{bmatrix} = v_2 \begin{bmatrix}
-1 \\
1 \\
-2
\end{bmatrix}
\]

where \(v_2 \in \mathbb{R}\). Therefore, a basis for the eigenspace \(E_1\) is

\[
B_1 = \{(-1, 1, -2)\}
\]

Now let \(\lambda = 2\). We follow the same process of solving \((A - \lambda I)v = 0:\)

\[
\begin{bmatrix}
3 & -2 & -2 & 0 \\
-1 & 4 & -2 & 2 \\
2 & -4 & -2 & 2
\end{bmatrix}
\xrightarrow{\text{row reduction}}
\begin{bmatrix}
1 & -2 & -2 \\
-1 & 2 & 2 \\
2 & -4 & -4
\end{bmatrix}
\]

so we get the single equation

\[
v_1 - 2v_2 - 2v_3 = 0.
\]

This means that \(v_1 = 2v_2 + 2v_3\), so the eigenvectors \(v\) can be written as

\[
v = \begin{bmatrix}
2v_2 + 2v_3 \\
v_2 \\
v_3
\end{bmatrix} = v_2 \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix} + v_3 \begin{bmatrix}
2 \\
0 \\
1
\end{bmatrix}
\]

where \(v_2, v_3 \in \mathbb{R}\). A basis for \(E_2\) is

\[
B_2 = \{(2, 1, 0), (2, 0, 1)\}.
\]

Since \(\dim(E_1) + \dim(E_2) = 1 + 2 = 3 = \dim(V)\) the linear map \(f\) is diagonalizable. Under the basis

\[
B = B_1 \cup B_2 = \{(-1, 1, 2), (2, 1, 0), (2, 0, 1)\}
\]

the map \(f\) is represented by the diagonal matrix

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{bmatrix}
\]
2. Let \(f: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}) \) be a linear map given by

\[
 f \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a & 2a + b \\ 2c & c + 2d \end{bmatrix}.
\]

Is \(f \) diagonalizable? If it is, express \(V = M_{2\times 2}(\mathbb{R}) \) as a direct sum of one-dimensional invariant subspaces under \(f \); then find a basis of \(V \) in which \(f \) is represented by a diagonal matrix.

Solution: Since \(f \) is a map from \(M_{2\times 2}(\mathbb{R}) \) to \(M_{2\times 2}(\mathbb{R}) \) we begin by finding a basis for \(M_{2\times 2}(\mathbb{R}) \) and representing \(f \) as a \(4 \times 4 \) matrix. Consider the basis \(B \) for \(M_{2\times 2}(\mathbb{R}) \) given by

\[
 B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}
\]

Applying \(f \) to the first element of \(B \), we get

\[
 f \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = 1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},
\]

so the first row of the matrix for \(f \) is

\[
 \begin{bmatrix} f \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) \end{bmatrix}_{B,B} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}.
\]

Continuing in this way, we find that

\[
 A = [f]_{B,B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}.
\]

Since this is a triangular matrix, the eigenvalues are simply the entries on the diagonal. That is, the eigenvalues are \(\lambda = 1 \) and \(\lambda = 2 \).

To see if \(f \) is diagonalizable, we need to check if the direct sum of the eigenspaces is all of \(V \). That is, we need to check if the dimensions of the eigenspaces add up to \(\dim(V) = 4 \).

We must calculate the eigenspace for each eigenvector. We want to solve

\[(A - \lambda I)v = 0\]

for \(v = (v_1, v_2, v_3, v_4) \in V \). First, let \(\lambda = 1 \). The augmented form of the above equation is

\[
 \begin{bmatrix} 1-1 & 0 & 0 & 0 & 0 \\ 2 & 1-1 & 0 & 0 & 0 \\ 0 & 0 & 2-1 & 0 & 0 \\ 0 & 0 & 1 & 2-1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \overset{\text{row reduction}}{\Rightarrow} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},
\]

so \(v_1 = v_3 = v_4 = 0 \) and the eigenvectors \(v \) can be written as

\[
 v = \begin{bmatrix} v_1 \\ v_2 \\ 0 \\ 0 \end{bmatrix} = v_2 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
\]

where \(v_2 \in \mathbb{R} \). A basis for the eigenspace \(E_1 \) is \(B_1 = \{(0,1,0,0)\} \) so \(\dim(E_1) = 1 \).

(continued on next page)
Now let $\lambda = 2$. We follow the same process of solving $(A - \lambda I)v = 0$:

$$
\begin{bmatrix}
1 - 2 & 0 & 0 & 0 \\
2 & 1 - 2 & 0 & 0 \\
0 & 0 & 2 - 2 & 0 \\
0 & 0 & 1 & 2 - 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
-1 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
$$

so $v_1 = v_2 = v_3 = 0$ and the eigenvector v can be written as

$$
v = \begin{bmatrix}
0 \\
0 \\
0 \\
v_4
\end{bmatrix} = v_4
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix},
$$

where $v_4 \in \mathbb{R}$. A basis for the eigenspace E_2 is $B_2 = \{(0, 0, 0, 1)\}$ so $\dim(E_2) = 1$.

Since $\dim(E_1) + \dim(E_2) = 1 + 1 = 2 \neq 4 = \dim(V)$
the linear map f is not diagonalizable.

3. Let V be the vector space of all smooth (infinitely differentiable) functions from \mathbb{R} to \mathbb{R}. Let $F: V \rightarrow V$ be a linear map defined by $F(u) = u'$. Find all eigenvectors and eigenvalues of F.

Solution: Since V is an infinite-dimensional vector space, we cannot solve this problem by converting to a matrix equation. Instead, we need to find the eigenvectors directly. Recall that an eigenvector of F is a vector $v \in V$ such that

$$
F(v) = \lambda v
$$

for some λ in the base field $F = \mathbb{R}$. In this case, we get the equation

$$
v' = \lambda v,
$$

where $v = v(t)$ is a (smooth) function of the variable t. This is a differential equation that can be solved using separation of variables:

$$
v' = \lambda v, \\
\int \frac{1}{v} v' dt = \int \lambda dt \\
\ln(v) = \lambda t + C \\
v = e^{\lambda t + C} = De^{\lambda t}
$$

In this case there was no restriction on λ when solving for v above, so every element of \mathbb{R} is an eigenvalue of F. The eigenvectors associated to the eigenvalue λ are

$$
\{De^{\lambda t} : D \in \mathbb{R}\}
$$

A basis for the eigenspace E_λ is $B_\lambda = \{e^{\lambda t}\}$, so each eigenspace has dimension 1.
4. Let \(f : \mathbb{C}^2 \to \mathbb{C}^2 \) be a linear map given by \(f(v) = Av \) where

\[
A = \begin{bmatrix}
1 - i & 2 - i \\
0 & 2 + i
\end{bmatrix}.
\]

Is \(f \) diagonalizable? If it is, express \(V = \mathbb{C}^2 \) as a direct sum of one-dimensional invariant subspaces under \(f \); then find a basis of \(V \) in which \(f \) is represented by a diagonal matrix.

Solution: Notice that \(A \) is a triangular matrix, so the eigenvalues are the entries on the diagonal:

\[
\lambda = 1 - i \quad \text{or} \quad \lambda = 2 + i.
\]

Since \(V \) has dimension 2 and there are 2 distinct eigenvalues, we already know that \(f \) is diagonalizable. We now need to find the eigenspace for each eigenvalue. That is, we need to solve

\[
(A - \lambda I)v = 0
\]

for \(v = (v_1, v_2) \in V = \mathbb{C}^2 \). First let \(\lambda = 1 - i \):

\[
\begin{bmatrix}
1 - i - (1 - i) & 2 - i \\
0 & 2 + i - (1 - i)
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} =
\begin{bmatrix}
0 & 2 - i \\
0 & 1 + 2i
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}.
\]

Perform row reduction:

\[
\begin{bmatrix}
0 & 2 - i \\
0 & 1 + 2i
\end{bmatrix}
\begin{bmatrix}
1 - 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 - i \\
0 & 1 + 2i
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}.
\]

This gives \(v_2 = 0 \), so the eigenvectors \(v \) are

\[
v = \begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} = v_1 \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

where \(v_1 \in \mathbb{C} \). A basis for the eigenspace \(E_{1-i} \) is \(\{(1, 0)\} \).

Now let \(\lambda = 2 \). We follow the same process of solving \((A - \lambda I)v = 0 \):

\[
\begin{bmatrix}
1 - i - (2 + i) & 2 - i \\
0 & 2 + i - (2 + i)
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix} =
\begin{bmatrix}
-1 - 2i & 2 - i \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}.
\]

Perform row reduction:

\[
\begin{bmatrix}
-1 - 2i & 2 - i \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 - 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 2 - i \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}.
\]

(continued on next page)
The fraction in the reduced matrix can be simplified:

\[
\frac{2 - i}{-1 - 2i} = \frac{2 - i}{-1 - 2i} \cdot \frac{-1 + 2i}{-1 + 2i} = \frac{(2 - i)(-1 + 2i)}{(-1)^2 - (2i)^2} = \frac{-2 + 4i + i + 2}{1 + 4} = \frac{5i}{5} = i,
\]

so the reduced matrix is

\[
\begin{bmatrix}
1 & i & 0 \\
0 & 0 & 0
\end{bmatrix}.
\]

This gives \(v_1 + iv_2 = 0 \), so \(v_1 = -iv_2 \). The eigenvectors \(v \) can be written as

\[
v = \begin{bmatrix} -iv_2 \\ v_2 \end{bmatrix} = v_2 \begin{bmatrix} -i \\ 1 \end{bmatrix}
\]

where \(v_2 \in \mathbb{C} \). A basis for the eigenspace \(E_{2+i} \) is \(\{(i, 1)\} \).

As we noted earlier, \(f \) is diagonalizable. Under the basis

\[
B = \{(1, 0), (-i, 1)\}
\]

the map \(f \) is represented by the diagonal matrix

\[
\begin{bmatrix}
1 - i & 0 \\
0 & 2 + i
\end{bmatrix}.
\]