f: V → W linear

If \(\dim V > \dim W \) then \(f \) is not monomorphic.

"Large blanket \(V \) has to be folded to put in the box \(W \)"

If \(\dim V < \dim W \) then \(f \) is not epimorphic.

"\(W \) is too big to be covered by \(V \)."

Theorem: If \(\dim V = \dim W < \infty \), then monomorphism, epimorphism, isomorphism are equivalent.

Why so?

Suppose \(f: V \to W \) is a monomorphism. By rank-nullity theorem,

\[
\dim \text{null}(f) + \dim \text{range}(f) = \dim V = \dim W
\]

\(= 0 \) since \(\dim V = \dim W \)

\(f \) is monomorphic

Then \(\dim \text{range}(f) = \dim W \). Because \(\text{range}(f) \) is a subspace of \(W \) and has the same dimension as \(W \), it must be equal to \(W \). Hence, \(f \) is epimorphic.

Next, we give discuss some quick ways to check if a linear map \(f: V \to W \) is monomorphic/epimorphic/isomorphich.

- Check if \(f \) is monomorphic:

 If \(\dim V > \dim W \) then conclude that \(f \) is not monomorphic.

 Otherwise, one can attempt to show that \(f \) is monomorphic by...
the following methods:

1) Use definition, i.e. show that \(\text{null}(f) = \{0\} \).
 For this method, one can start the proof by saying: "let \(v \in V \) such that \(f(v) = 0 \). We want to show \(v = 0 \)."

2) Check if \(\dim \text{range}(f) = \dim V < \infty \).
 Once this is shown, \(\text{null}(f) = \{0\} \) because of rank-nullity theorem:
 \[
 \frac{\dim \text{null}(f) + \dim \text{range}(f)}{\dim V} = 1
 \]
 For this method, one can start by writing
 \[
 \text{range}(f) = \{ \ldots \} = \text{span} \{\ldots\} \quad \text{(try to find a spanning set)}
 \]
 Then try to find a basis of \(\text{range}(f) \). It is usually this spanning set (but one needs to check if the spanning set is linearly independent).
 Then one compares the dimension of \(\text{range}(f) \) with dimension of \(V \).

- Check if \(f \) is epimorphic:
 If \(\dim V < \dim W \) then conclude that \(f \) is not epimorphic.
 Otherwise, one can attempt to show that \(f \) is epimorphic by the following methods:

1) Use definition, i.e. show that \(\text{range}(f) = W \).
 Since \(\text{range}(f) \) is a subspace of \(W \), it suffices to show that \(\dim \text{range}(f) = \dim W \).
 For this method, one can start by writing
 \[
 \text{range}(f) = \{ \ldots \} = \text{span} \{\ldots\} \quad \text{(try to find a spanning set)}
 \]
 Then try to find a basis of \(\text{range}(f) \). It is usually this spanning set (but one needs to check if the spanning set is linearly independent).
 Then one compares the dimension of \(\text{range}(f) \) with dimension of \(W \).
2) Check if \(f \) is onto.

For this method, one can start by writing: "Let \(w \in W \). We want to find \(v \in V \) such that \(f(v) = w \)."

- Check if \(f \) is isomorphic:

If \(\dim V \neq \dim W \) then conclude that \(f \) is not isomorphic. Otherwise, one can attempt to show that \(f \) is isomorphic by showing that \(f \) is monomorphic (or epimorphic). Note that in this case (\(\dim V = \dim W \)), isomorphism is equivalent to monomorphism and is equivalent to epimorphism.

One can start, for example, by writing that: "Let \(v \in V \) such that \(f(v) = 0 \). We want to show \(v = 0 \)."

See examples on the worksheets.