The statements \(V_1 \oplus V_2 \oplus \ldots \oplus V_n = V \) means two things:
1. The sum \(V_1 + V_2 + \ldots + V_n \) is a direct sum,
2. \(V_1 + V_2 + \ldots + V_n = V \).

Ex:

Let \(V \) be a vector space over a field of numbers \(F \), which could be \(\mathbb{Q} \), \(\mathbb{R} \), or \(\mathbb{C} \). For each \(v \in V \), we use the notation
\[
F_v := \{ cv : c \in F \} = \text{span}\{v\}.
\]

If \(v \neq 0 \) then \(F \) is a 1-dimensional subspace with basis \(\{v\} \).

Suppose \(B = \{v_1, v_2, \ldots, v_n\} \) is a basis of \(V \). Then
\[
V = F_{v_1} \oplus F_{v_2} \oplus \ldots \oplus F_{v_n}. \tag{*}
\]
In other words, \(V \) is "decomposed" into \(n \) one-dimensional subspaces. Why is \((*) \) true?

We need to show two things:

1. The sum \(F_{v_1} + \ldots + F_{v_n} \) is a direct sum.
2. \(F_{v_1} + \ldots + F_{v_n} = V \).

To show (1), we take a basis of each subspace \(F_{v_i} \).

Choose \(B_i = \{v_i\} \). The concatenation is
\[
B_1 \cup B_2 \cup \ldots \cup B_n = \{v_1, v_2, \ldots, v_n\}.
\]
This set is linearly independent because it is a basis of \(V \).

Therefore, (1) is true.

To show (2), we notice that \(F_{v_1} + \ldots + F_{v_n} \) is a subspace of \(V \). Because \(F_{v_1} + \ldots + F_{v_n} \) is a direct sum,
\[
\dim (F_{v_1} + \ldots + F_{v_n}) = \dim F_{v_1} + \ldots + \dim F_{v_n}\]

= n = \dim V.

Therefore, \(E V_1 + \ldots + E V_n = V \).

Ex.

Consider the following subspaces of \(M_{2 \times 2}(\mathbb{R}) \):

\[V_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + d = b + c = 0 \right\} \]

\[V_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + c = b = d = 0 \right\} \]

\[V_3 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : b = c = d = 0 \right\} \]

Show that \(V_1 \oplus V_2 \oplus V_3 = M_{2 \times 2}(\mathbb{R}) \).

Our strategy is to convert this problem into a problem in \(\mathbb{R}^4 \) by using coordinates. Consider the standard basis of \(M_{2 \times 2}(\mathbb{R}) \):

\[B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}. \]

Each vector \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) of \(M_{2 \times 2}(\mathbb{R}) \) corresponds to a vector \(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \) of \(\mathbb{R}^4 \).

\[V_1 \text{ has a basis } B_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \right\}. \]

\[V_2 \text{ has a basis } B_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}. \]
\(V_1 \) has a basis \(B_3 = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \} \)

We convert the problem on \(M_{22}(\mathbb{R}) \) to a problem on \(\mathbb{R}^4 \) as follows.

\(V_1 \) corresponds to a subspace \(V_1' \) of \(\mathbb{R}^4 \) with basis
\[
B_1' = \{ \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \}
\]

\(V_2 \) corresponds to a subspace \(V_2' \) of \(\mathbb{R}^4 \) with basis
\[
B_2' = \{ \begin{bmatrix} 1 & 0 & -1 & 0 \end{bmatrix} \}
\]

\(V_3 \) corresponds to a subspace \(V_3' \) of \(\mathbb{R}^4 \) with basis
\[
B_3' = \{ \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \}
\]

We want to show \(V_1' \oplus V_2' \oplus V_3' = \mathbb{R}^4 \).

This means that we need to show two things:

1. \(V_1' + V_2' + V_3' \) is a direct sum,
2. \(V_1' + V_2' + V_3' = \mathbb{R}^4 \).

Show (1):

Concatenate the bases:
\[
\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}
\]

\(B_1' \quad B_2' \quad B_3' \)

\[
= \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \xrightarrow{REF} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
\]

Thus, \(B_1' \cup B_2' \cup B_3' \) is linearly independent.

Show (2):

We know that \(V_1' + V_2' + V_3' \) is a subspace of \(\mathbb{R}^4 \) and
\[\dim (V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3 \quad \text{(due to direct sum)} \]
\[= 2 + 1 + 1 \]
\[= 4 \]
\[= \dim \mathbb{R}^4. \]
Therefore, \(V_1 + V_2 + V_3 = \mathbb{R}^4 \).

* Invariant subspaces:
Recall the definition: let \(f: V \to V \) be a linear map. Note that \(f \) goes from \(V \) to itself. A subspace \(W \subset V \) is called invariant under \(f \) if \(f(W) \subset W \).

Note:
\[f(W) \triangleq \{ f(x) : x \in W \} \]
(the set of the images of vectors in \(W \) under \(f \)).

Intuitively, if \(W \) is invariant under \(f \) then \(f \) can be "localized" to \(W \).

To show \(f(W) \subset W \), one starts by writing:
"Take \(x \in W \). We want to show \(f(x) \in W \)."

See an example on the worksheet.