Let \(f : V \rightarrow V \) be a linear map. How to check if \(f \) is diagonalizable?

Suppose that \(f \) is diagonalizable. Then \(V \) can be decomposed into \(1 \)-dim invariant subspaces under \(f \):

\[
V = V_1 \oplus V_2 \oplus \ldots \oplus V_n
\]

Each \(V_k \) is the span of \(\{v_k\} \) for some \(v_k \neq 0 \).

\(V_k \) corresponds to an eigenvalue \(\lambda_k \). \(f(v_k) = \lambda_k v_k \). If we put

\[
E(\lambda_k) = \{ v \in V : f(v) = \lambda_k v \}
\]

then \(V_k \) is contained in \(E(\lambda_k) \). Note that \(E(\lambda_k) \) is called the eigenspace corresponding to eigenvalue \(\lambda_k \).

Let \(\lambda_1, \lambda_2, \ldots, \lambda_m \) be distinct eigenvalues of \(f \). We have reasoned that each of \(V_1, V_2, \ldots, V_n \) is contained in one of \(E(\lambda_1), E(\lambda_2), \ldots, E(\lambda_m) \). Thus,

\[
V_1 + V_2 + \ldots + V_n \subseteq E(\lambda_1) + \ldots + E(\lambda_m) = V
\]

Because the RHS is a subspace of \(V \), we get

\[
V = E(\lambda_1) + \ldots + E(\lambda_m).
\]

Note that the RHS is also a direct product (without any assumption on \(f \) except that \(f \) is linear). We proved a special case of this in Lecture 20 (11/15/2019).

In conclusion, if \(f \) is diagonalizable then \(V = E(\lambda_1) \oplus \ldots \oplus E(\lambda_m) \).
Now suppose that \(V = E(\lambda_1) \oplus E(\lambda_2) \oplus \ldots \oplus E(\lambda_m) \). We show that \(f \) is diagonalizable.

Let \(B_k = \{ v_{i_1}^{(k)}, v_{i_2}^{(k)}, \ldots, v_{i_r}^{(k)} \} \) be a basis of \(E(\lambda_k) \). Then \(E(\lambda_k) \) is 1-dim and invariant under \(f \).

Then \(V = E(\lambda_1) \oplus E(\lambda_2) \oplus \ldots \oplus E(\lambda_m) \)

\[
= (Fv_1^{(1)} \oplus \ldots \oplus Fv_r^{(1)}) \oplus (Fv_1^{(2)} \oplus \ldots \oplus Fv_r^{(2)}) \oplus \ldots \oplus (Fv_1^{(m)} \oplus \ldots \oplus Fv_r^{(m)})
\]

This shows that \(V \) is decomposed into 1-dim invariant subspaces.

In conclusion, we have showed:

Theorem:
Let \(f: V \to V \) be a linear map, where \(V \) is a vector space over \(F \). Let \(\lambda_1, \ldots, \lambda_m \) be all distinct eigenvalues of \(f \). Then \(f \) is diagonalizable if and only if \(V = E(\lambda_1) \oplus E(\lambda_2) \oplus \ldots \oplus E(\lambda_m) \).

In problem solving, we only need to check if \(\dim V = \dim E(\lambda_1) + \ldots + \dim E(\lambda_m) \).

Procedure to check if \(f: V \to V \) is diagonalizable:

1) Find all the distinct eigenvalues of \(f \), called \(\lambda_1, \ldots, \lambda_m \).
2) Find a basis \(B_k \) for eigenspace \(E(\lambda_k) \).
3) Check if \(\dim V = \dim \text{E}(d_1) + \ldots + \dim \text{E}(d_m) \)

If they are not equal, conclude that \(f \) is not diagonalizable.
If they are equal then \(f \) is diagonalizable. The basis

\[B = B_1 \cup B_2 \cup \ldots \cup B_m \]

diagonalizes \(f \) because \([f]_B \) is a diagonal matrix.

\[
[f]_B = \begin{bmatrix}
[f(x_1^{(1)})]_B & [f(x_2^{(1)})]_B & \cdots & [f(x_i^{(1)})]_B & \cdots \\
0 & 0 & \cdots & 0 & \cdots \\
0 & 0 & \cdots & 0 & \cdots \\
0 & 0 & \cdots & 0 & \cdots \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\alpha_1 & 0 & \cdots & 0 \\
0 & \alpha_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_m \\
\end{bmatrix}
\]