1. Consider the following subspaces of \mathbb{R}^4:

$$V_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2 = 0\},$$

$$V_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_3 = 0\},$$

$$V_3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_2 = x_3 = x_4 = 0\},$$

$$V_4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_3 = x_4 = 0\}.$$

Which of the following sums are direct sums: (a) $V_1 + V_2$; (b) $V_2 + V_3 + V_4$; (c) $V_1 + V_3 + V_4$?

A basis of V_1 is $B_1 = \{(0,1,0,0), (0,0,0,1)\}$.

A basis of V_2 is $B_2 = \{(0,1,0,0), (0,0,0,1)\}$.

A basis of V_3 is $B_3 = \{(0,1,0,0)\}$.

A basis of V_4 is $B_4 = \{(0,1,0,0)\}$.

$V_1 + V_2$ is not a direct sum because $(0,1,0,0) \in V_1 \cap V_2$.

To see if $V_2 + V_3 + V_4$ is a direct sum, we concatenate B_2, B_3, B_4:

$$\begin{bmatrix}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix} \xrightarrow{\text{RREF}} \begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}$$

These 4 vectors are not linearly independent. Thus, $V_2 + V_3 + V_4$ is not a direct sum.

By a similar method, we can see that $V_1 + V_3 + V_4$ is a direct sum.
2. Let \(F : P_3 \rightarrow P_3 \) be a linear map given by \(F(u) = xu' \). Consider the following subspaces \(U = \text{span}\{x, 1\} \) and \(V = \text{span}\{x^2 - 1, x + 1\} \). Check whether \(U \) and \(V \) are invariant under \(F \).

* Check if \(U \) is invariant under \(F \):

Let \(u \in U \). We want to check if \(F(u) \in U \).

By the def. of \(U \), we can write \(u = ax + b \) for some \(a, b \in \mathbb{R} \).

Then \(F(u) = xu' = ax \).

Then \(F(u) \in U \). Thus, \(U \) is invariant under \(f \).

* Check if \(V \) is invariant under \(F \):

Let \(v \in V \). We want to check if \(F(v) \in V \).

By the definition of \(V \), we can write \(v = a(x^2 - 1) + b(x + 1) = ax^2 + bx - a + b \).

Then \(F(v) = xv' = x(2ax + b) = 2ax^2 + bx \).

For \(a = 0 \) and \(b = 1 \), we have \(v = x + 1 \) and \(F(v) = x \).

We will show that \(x \notin V = \text{span}\{x^2 - 1, x + 1\} \).

Suppose by contradiction that \(x \in V \). Then there are \(c, d \in \mathbb{R} \) such that

\[
x = c(x^2 - 1) + d(x + 1).
\]

Equivalently,

\[
cx^2 + (d - 1)x - c + d = 0 \quad \forall x \in \mathbb{R}
\]

This only happens if \(\begin{cases} c = 0 \\ d - 1 = 0 \\ c + d = 0 \end{cases} \) however, this system is inconsistent.

Therefore, \(F(v) = x \notin V \). We conclude that \(V \) is not invariant under \(F \).