Some consequences of floating-point arithmetic error:

1) Loss of significant digits:

This can be seen by drawing a line and marking all the numbers that can be represented by IEEE-754 format.

\[\cdots \quad 0 \quad \cdots \quad 1 \quad \text{machine epsilon} = 2^{-52} \]

\[\frac{1}{2^{1022}} \]

\[1 = (1.00\ldots0)_2 \times 2^0 \]

next number = (1.00\ldots01)_2 \times 2^0

machine \(\varepsilon = (0.0\ldots01)_2 \times 2^0 = 2^{-52} \)

The red dots represent the number that can be represented with exactness by the IEEE format. We see that these dots get sporadic when moving toward 0 (or \(\infty \)). Thus, if \(x \gg y \) (\(x \) is much bigger than \(y \)) then \(x + y \) will be rounded to \(x \).

Loss of significant digits can also occur when multiplying too big number by a too small number. Some significant digits of the smaller number is lost due to rounding. Then this roundoff error is magnified by multiplication with the large number.

\[\frac{x (\sqrt{x+1} - \sqrt{x})}{\frac{\text{large}}{\text{small}}} = \frac{x}{\sqrt{x+1} + \sqrt{x}} \]

better for calculation

In Matlab, try two methods for \(x = 10^{200} \):

2) Overflow and underflow:

This is caused by multiplying two too big numbers (overflow)
or two too small numbers (underflow).

\[E^2: \]

Compute \(\sqrt{x^2 + y^2} \) for \(x = 10^{200} \), \(y = 11^{200} \).

The size of \(z = \sqrt{x^2 + y^2} \) is of the same order as the size of \(x \). But if one squares \(x \) and \(y \), it will result in overflow (recall that the largest number that can be represented in IEEE 754 is about \(10^{308} \)). Instead, one can compute \(z \) another way:

\[z = x \sqrt{1 + \left(\frac{y}{x} \right)^2} \]

3) Issue with choosing too small \(h \) in consideration of the limit as \(h \to 0 \):

Consider function \(f(x) = x^2 \). We want to evaluate \(f'(1) \) on computer. By definition,

\[f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - 1}{h} \]

Thus,

\[f'(1) \approx \frac{(h+1)^2 - 1}{h} \]

\(h \) would be considered as 0 in the IEEE 754 format if \(h \leq (0.00...01)_{2} \times 2^{-1022} = 2^{-1024} \)

1+\(h \) would be considered as 1 if \(1 \leq 1+h \leq (1.0...01)_{2} \times 2^{0} = 1+2^{-52} \)

Therefore, if \(h \) is about \(2^{-52} \) (or less), 1+\(h \) is considered as 1 and the numerator is equal to zero. The denominator is nonzero as long as \(h > 2^{-1024} \).
$2^{-52} \approx 10^{-16}$

One can check with Matlab that

$$\frac{(1+h)^2 - 1}{h} = 0 \quad \text{when} \quad h = 10^{-16}$$

This error is caused by the nature of floating-point format.

One should be aware of issues like this when programming an algorithm. For example, it is sufficient to select a small h of order 10^{-8}, but not as small as 10^{-14}.