Let us compute approximately the integral \(I = \int_1^3 x^2 \, dx \) by

- left-point rule (call the sum \(L_n \)),
- trapezoidal rule (call the sum \(T_n \)),

with \(n + 1 \) equally spaced sample points \(1 = x_0 < \ldots < x_n = 3 \).

(a) Write \(L_n \) and \(T_n \) using sigma notation.

(b) Find \(n \) such that \(L_n \) approximates \(I \) with error not exceeding \(\epsilon = 10^{-4} \).

(c) The same question as in Part (b) for \(T_n \).
We know that
\[|T - L_n| \leq \frac{M}{2} \frac{(b-a)^2}{n} \]
where \[a = 1, \ b = 3 \]
\[M = \max_{x \in [a, b]} |f'(x)| \]

We have \[M = \max_{x \in [1, 3]} |2x| = \max_{x \in [1, 3]} 2x = 6 \]

Thus, \[|T - L_n| \leq \frac{6}{2} \frac{(3-1)^2}{n} = \frac{8}{n} \]

To get \[|T - L_n| < 10^{-4} \], we only need \(n \) such that
\[\frac{8}{n} < 10^{-4} \]

This is equivalent to \(n > 80000 \). (A big number!)

The trapezoid rule will be mentioned in class soon.