Some review problems for Final

1. Consider function \(f(z) = \frac{\text{Log}(z+5)}{\sin z} \).

(a) Determine all singular point(s) of \(f \) enclosed in the circle \(C_4(0) \).

(b) Are they isolated singularities? If so, which kind of isolated singularity are they (removable, pole, essential)?

(c) Compute the residue of \(f \) at each of these singularities.

(d) Evaluate the integral \(\int_{\gamma} f(z)dz \) where \(\gamma \) is the circle \(C_4(0) \) oriented counterclockwise.

2. Find the following limits.

(a) \(\lim_{z \to i} \frac{z^4-1}{z-i} \)

Hint: factor or use L’Hospital rule.

(b) \(\lim_{z \to 1+i} \frac{z^2+z-1-3i}{z^2-2z+2} \)

(d) \(\lim_{z \to \infty} \frac{z}{e^z} \)

3. Find an antiderivative if exists of the following functions. Specify the domain of that antiderivative.

(a) \(f(z) = -2(xy + x) + i(x^2 - 2y - y^2) \)

Hint: write \(F' = f \). Then use Cauchy-Riemann equations.

(c) \(f(z) = \bar{z} \)

(e) \(f(z) = \frac{1}{z^2+1} \)

(d) \(f(z) = \frac{z-2}{z^2-z} \)

(b) \(f(z) = z \text{Log } z \)

Hint: first regard \(z \) as real. Do integration by part. Double check formula by differentiation.

(f) \(f(z) = \frac{z+1}{(z-\frac{1}{2})^2 \sin z} \)

(g) \(f(z) = \frac{z+2}{z^2} \)

(f) \(f(z) = \frac{z+1}{(z-\frac{1}{2})^2 \sin z} \)

4. Compute the following integrals. If you need to use a named theorem, make sure to specify it (Cauchy-Goursat, Fundamental theorem of Calculus, Cauchy’s Integral formula, Cauchy’s Residue theorem.)

(a) \(\int_{\gamma} z^2dz \) where \(\gamma(t) = (\sin t, t^2), \ 0 \leq t \leq \pi. \)

(b) \(\int_{\gamma} \frac{1}{z}dz \) where \(\gamma(t) = e^{3it}, \ 0 \leq t \leq 2\pi. \) (Warning: \(\gamma \) is not a simple loop.)

(c) \(\int_{\gamma} \bar{z}dz \) where \(\gamma(t) = (3t, t^2), \ -1 \leq t \leq 2. \)

(d) \(\int_{\gamma} \frac{e^z}{z(z-3)}dz \) where \(\gamma \) is the unit circle oriented clockwise.

(e) \(\int_{\gamma} z^2 \sin \left(\frac{1}{z^2} \right)dz \)

where \(\gamma \) is the boundary of square with vertices at \(\pm 1 \pm i \) negatively oriented. Hint: use Laurent series.

(f) \(\int_{\gamma} \frac{z+1}{(z-\frac{1}{2})^2 \sin z}dz \) where \(\gamma \) is the circle \(C_2(0) \) oriented counterclockwise.

(g) \(\int_{\gamma} \frac{z+2}{z^2}dz \) where \(\gamma \) is the figure eight curve as in the picture.
Answer key

1. (a) \(z = 0, -\pi, \pi \)
 (b) Yes. Each is a pole of order 1 (single pole).
 (c) \(\text{Res}[f; 0] = \ln 5, \quad \text{Res}[f; \pi] = -\ln(5 + \pi), \quad \text{Res}[f; -\pi] = -\ln(5 - \pi) \)
 (d) \(2\pi i \ln \frac{5}{25 - \pi^2} \)

2. (a) \(-4i\)
 (b) \(1 - \frac{3}{2}i\)
 (c) 0
 (d) DNE

3. (a) \(F(z) = u + iv \) where \(u(x, y) = -x^2y - x^2 + y^2 + \frac{y^3}{3} \) and \(v(x, y) = \frac{x^3}{3} - 2xy - xy^2 \), valid on \(\mathbb{C} \).
 (b) \(F(z) = -\frac{x^2}{4} + \frac{x^2}{2} \log z \), valid on \(\mathbb{C} \setminus \mathbb{R} \leq 0 \).
 (c) No antiderivatives
 (d) \(F(z) = -\log(z - 1) + 2\log z \), valid on \(\mathbb{C} \setminus \mathbb{R} \leq 1 \).
 (e) \(F(z) = \frac{1}{2i} \log(z - i) - \frac{1}{2i} \log(z + i) \), valid on \(\mathbb{C} \) minus to lines \(\{t + i : t \leq 0\} \) and \(\{t - i : t \leq 0\} \).

4. (a) \(-\frac{\pi^6}{3}i\)
 (b) \(6\pi i\)
 (c) \(21 + 9i\)
 (d) \(\frac{2\pi i}{3}\)
 (e) \(\frac{\pi i}{3}\)
 (f) \(2\pi i(1 + \frac{1}{\pi^2})\)
 (g) \(-4\pi i\)

Formula to be provided on Final Exam

\[
e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots
\]
\[
\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \cdots
\]
\[
\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots
\]
\[
\log(z + 1) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots
\]

Cauchy–Riemann equations:

\[
\begin{cases}
\partial_x u = \partial_y v \\
\partial_y u = -\partial_x v
\end{cases}
\]

Cauchy’s Integral formula:

\[
\int_{\gamma} \frac{f(z)}{(z - a)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(a)
\]
Cauchy’s Residue formula:

\[\int_{\gamma} f(z) \, dz = 2\pi i (\text{Res} \ [f; z_1] + \text{Res} \ [f; z_2] + \cdots + \text{Res} \ [f; z_m]) \]

If \(a \) is a pole of order \(n \) of function \(f \) then

\[\text{Res} \ [f; a] = \frac{1}{(n - 1)!} \lim_{z \to a} \frac{d^{n-1}}{dz^{n-1}}[(z - a)^n f(z)] \]