1. Evaluate the following limits. You can use the command \texttt{Limit} in Mathematica to double check your results. Try the example: \texttt{Limit[1/(z + I), z \to \infty]}

(a) \[\lim_{z \to i} \frac{z^3 + i}{z - i} \]

(b) \[\lim_{z \to 0} \frac{\log(z + i) - \log i}{z} \]

(c) \[\lim_{z \to 0} \frac{e^z - 1}{\log(z + 1)} \]

(d) \[\lim_{z \to \infty} z \sin \left(\frac{1}{z} \right) \]

\textbf{Hint: change variable } w = 1/z.

2. Consider the function \(f(z) = \frac{z}{|z|} \).

(a) Write \(f(z) \) in complex standard form \(f = u + iv \). In other words, determine \(\text{Re } f(z) \) and \(\text{Im } f(z) \).

(b) Use Mathematica to plot \(u \) and \(v \). \textbf{Hint: use command \texttt{Plot3D}.}

(c) Find the limit of \(f(z) \) as \(z \) approaches 0 along each of the following paths:
 - the negative side of the real axis,
 - the positive side of the real axis,
 - the negative side of the imaginary axis,
 - the positive side of the imaginary axis.

(d) Find the limit of \(f(z) \) as \(z \) approaches \(\infty \) along each of the following paths:
 - the positive side of the real axis,
 - the positive side of the imaginary axis.

3. The principal argument is given by

\[
\text{Arg } z = \begin{cases}
\arctan \left(\frac{y}{x} \right) & \text{if } x > 0, \\
\arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) & \text{if } y > 0, \\
-\arccos \left(\frac{x}{\sqrt{x^2 + y^2}} \right) & \text{if } y < 0,
\end{cases}
\]

where \(z = x + iy \). Use Cauchy–Riemann theorem to verify that the function \(f(z) = \log z \) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_{\leq 0} \).

4. Verify that an antiderivative of \(f(z) = \log z \) on the region \(\mathbb{C} \setminus \mathbb{R}_{\leq 0} \) is \(F(z) = z \log z - z \).

5. Consider the function \(f(z) = \log z + \log(iz - i) \).

(a) Determine the region where \(f(z) \) is holomorphic.

(b) Determine all antiderivatives of \(f(z) \) on this region.

6. (Similar to Problem 4.5 on page 69 of the textbook) \textit{Use the definition of complex integration to integrate the following functions over the upper semicircle } \(C_2(0) \) \textit{oriented counter-clockwise.}

(a) \(f(z) = z + \bar{z} \)

(b) \(f(z) = z^2 - 2z + 3 \)

(c) \(f(z) = xy \)

(d) \(f(z) = \frac{1}{z^2} \)

\textbf{Hint: use de Moivre’s formula.