We considered examples of complex functions being differentiable only on a curve and nowhere else. This region of differentiability is too small to do calculus. A function holomorphic at some point (differentiable on at least a disk) is a more preferred object to study calculus on.

So far, we know 2 methods to check differentiability and compute derivatives: using definition or C-R equations.

Ex: \(f(z) = z^2 \)

1\(^{st}\) method: use definition

\[
\frac{f(z)-f(z_0)}{z-z_0} = \frac{(z-z_0)(z+z_0)}{z-z_0} = z + z_0 \quad \text{as } z \to z_0
\]

Thus, \((z^2)' = 2z\).

2\(^{nd}\) method: use C-R's theorem

\[
z^2 = \frac{x^2-y^2}{u} + i \frac{2xy}{v}
\]

\[
\begin{align*}
\frac{\partial_x u}{\partial_y v} - \frac{\partial_y u}{\partial_x v} &= 2x \\
\frac{\partial_x v}{\partial_y v} - \frac{\partial_y v}{\partial_x v} &= 2y
\end{align*}
\]

C-R eqns. are satisfied

\((z^2)' = \partial_x u + i \partial_y v = 2x + i2y = 2z\).

There are cleaner ways to check differentiability and compute derivatives.

Laws of derivatives

Sum: \((f(z) + g(z))' = f'(z) + g'(z)\)

Product (Leibniz's rule): \((f(z)g(z))' = f(z)g'(z) + f'(z)g(z)\)

Quotient: \((\frac{f(z)}{g(z)})' = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}\)

Composition (chain rule): \([f(g(z))]' = f'(g(z))g'(z)\)

Ex: \((z^n)' = nz^{n-1}\), where \(n = 1, 2, 3, \ldots\) (use product rule)
Example:
\[(\frac{1}{z})' = -\frac{1}{z^2}, \quad \forall z \in \mathbb{C} \setminus \{0\}\]

Use quotient rule.

Example:
\[\log z \quad \rightarrow \quad e^z \quad \rightarrow \quad (\infty, 0) \times (-\pi, \pi) \rightarrow \mathbb{C} \setminus \mathbb{R}_{\leq 0}\]

\[e^{\log z} = z\]

Take derivative of both sides:
\[(\log z)' e^{\frac{\log z}{z}} = 1\]

Principal logarithm is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_{\leq 0}\) and \((\log z)' = \frac{1}{z}\).

Example:
\[f(z) = \sqrt{z} \quad \text{(principal branch)}\]

By definition, \(f(z) = e^{\frac{1}{2} \log z}\).

\(f\) is holomorphic on \(\mathbb{C} \setminus \mathbb{R}_{\leq 0}\) and
\[f'(z) = \frac{1}{2} (\log z)' e^{\frac{1}{2} \log z} = \frac{1}{2z} \frac{\log z}{z} = \frac{1}{2z} \cdot \frac{1}{2z} = \frac{1}{2z} \cdot \frac{1}{2z}\]

Observations:

* Derivative of logarithm is the same \((\frac{1}{z})\), regardless of the chosen branch. (Each branch differs from one another by a constant \(k2\pi i\), whose derivative is zero).

* \((e^z)' = e^z\)

branch of logarithm
Constant functions

Suppose \(f: \mathbb{C} \rightarrow \mathbb{C} \) satisfies \(f'(z) = 0 \) for all \(z \in \mathbb{C} \). Is it possible to conclude that \(f = \text{const} \) on \(\mathbb{C} \)?

This is a basic question to ask before one considers antiderivatives.

\[
\begin{align*}
\int g' &= f' \\
\int h' &= f'
\end{align*}
\]

\(g \) and \(h \) differ from each other by a constant.

Recall how we answer this question in the case \(f: [a, b] \rightarrow \mathbb{R} \).

To show \(f(a) = f(b) \) for any \(a, b \in [a, b] \), we used Lagrange's theorem: if \(f \) is cont. on \([a, b]\) and differentiable on \((a, b)\) then there exists \(c \in (a, b) \) such that

\[
\frac{f(b) - f(a)}{b - a} = f'(c)
\]

\(\Rightarrow f(b) = f(a) \)

An important ingredient in the above argument is that \(f \) is differentiable on the entire interval \((a, b)\). If \(I \) is not an interval, say \(I = (0, 1) \cup (2, 3) \), then \(f \) wouldn't necessarily be constant on \(I \). It is constant on \((0, 1)\) and on \((2, 3)\) separately.

Connected components of \(I \)
Def: An open set $G \subset \mathbb{C}$ is said to be connected if any two points in G can be connected to each other by a path in G.

*Note: this path can be chosen to be a "rectangle" path:

Thm: Let $G \subset \mathbb{C}$ be an open connected subset. A function $f: G \to \mathbb{C}$ with $f'(z) = 0$ for all $z \in G$ must be constant.

why? Recall that $f'(z) = \partial_x u + i \partial_y v = \partial_y v - i \partial_x u$

Thus, $\partial_x u = \partial_y v = \partial_y v = \partial_x u = 0$ everywhere in G.

For $z_1, z_2 \in G$, there is a rectangle path in G that connects them. The value of f is the same on each straight segment of the path. Thus, $f(z_2) = f(z_1)$.

Examples of non-connected sets:

$G_1 \cup G_2 \quad f(z) = \begin{cases} \frac{z}{2} & \text{on } G_1 \\ b & \text{on } G_2 \end{cases}$

$G = G_1 \cup G_2 \quad f'(z) = 0 \quad \forall z \in G$

but f is not constant on G.