If $F' = f$ on a connected set $G \subset \mathbb{C}$ then all antiderivatives of f on G is $F(z) + C$.

Why? Suppose F is an antiderivative of f on G. Then

$F' = f$ on G implies $(F - F_0)' = 0$ on G

$\Rightarrow F - F_0 = \text{const}$ on G since G is connected.

Ex: $f(z) = \sqrt{1-z} + \sqrt{1+z}$ (principal branch)

Domain of continuity / differentiability is $\mathbb{C} \setminus \{ z \in \mathbb{R} : z \leq -1 \}$

\[F(z) = \frac{2}{3} (1-z)^{\frac{3}{2}} + \frac{2}{3} (1+z)^{\frac{3}{2}} \]

This region is connected. Thus, all antiderivatives of f are

$F(z) + C = \frac{2}{3} (1-z)^{\frac{3}{2}} + \frac{2}{3} (1+z)^{\frac{3}{2}} + C$

where C is a complex constant.

Thm: (to be proved next week) if f is holomorphic on G and G is simply connected then it has an antiderivative on G.

A simply-connected set is a connected set in which every closed path (loop) can be continuously contracted to a point. Intuitively, a simply-connected set is a connected set without "holes.

Simply-connected

not simply-connected

\(C \setminus \{0\} \)

\(\text{not simply-connected} \)

\(\text{green curve can't contract to a point} \)

\(\text{E.g. the function } \frac{1}{z} \text{ has no antiderivatives on } C \setminus \{0\}, \) although it is continuous on \(C \setminus \{0\} \). Why?

We know that \(\text{Log} z \) is an antiderivative of \(\frac{1}{z} \) on \(C \setminus \{0\} \), but it is not simply connected. An antiderivative is not guaranteed to exist.

\(C \setminus \{0\} \) is not simply connected. An antiderivative is not guaranteed to exist. In this example, it in fact doesn't exist.

\(C \setminus \{0\} \) is simply connected. An antiderivative is guaranteed to exist.

\(\text{jump of } -2\pi i \)

Note that \(C \setminus \{0\} \) is a connected set. Any antiderivative of \(\frac{1}{z} \) on \(C \setminus \{0\} \), if exists, must be equal to \(\text{Log} z + C \) on \(C \setminus \{0\} \). The function \(\text{Log} z + C \) has a jump of \(2\pi i \) across the ray \(R \setminus \{0\} \). There is no way to "fix" the function \(\text{Log} z + C \) on the ray \(R \setminus \{0\} \) to make it continuous on there (not to say differentiable).

Mapping properties of holomorphic functions.

* Multiplication by complex number: \(z \mapsto az \)
Write \(a = re^{i\theta} \).

The multiplication by complex number \(a = re^{i\theta} \) is obtained by stretching by factor \(r \) and then rotating by angle \(\theta \). The order of rotation and dilation can be reversed.

In complex standard form, \(\wp(z) = (r \cos \theta + ir \sin \theta)(x + iy) = \ldots \)

\(\wp \) is a linear map. In matrix form,

\[
\wp \begin{bmatrix} x \\ y \end{bmatrix} = r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

dilation \hspace{1cm} rotation

Ex: Rotation by \(\pi/2 \) about the origin followed by translation by vector \((2, 1)\):

\[
\begin{align*}
z & \rightarrow e^{i\pi/2} z \\
2 + i + e^{i\pi/2} \bar{z} & \rightarrow 2 + i + e^{i\pi/2} \bar{z}
\end{align*}
\]
\[\wp(z) = 2 + i + e^{i\pi/2} \bar{z}\]

In standard form:
\[\wp(z) = 2 + i + i(x + iy) = 2 - y + ((1+x))\]

which can be viewed as \(\wp(x, y) = (2 - y, 1 + x) \).

* General holomorphic map \(f: \mathbb{C} \rightarrow \mathbb{C} \):
\[f'(z_0) = \frac{af'(z_0)}{dz_0} \]

\[af(z_0) = f'(z_0) dz_0 \]

(In precise form, \(df = f'(z_0) dz \).)

Write \(f'(z_0) = re^{i\theta} \)

\(df \) is obtained by dilation \(dz \) by factor \(r \) and rotation by angle \(\theta \).

Let \(\gamma \) be a curve passing through \(z_0 \). Suppose \(\gamma(0) = z_0 \).

The image of \(\gamma \) under \(f \) is another curve: \(\eta(t) = f(\gamma(t)) \).

\[\eta'(0) = \frac{f'(\gamma(0)) \gamma'(0)}{\text{tan} \text{gent vector of } \gamma \text{ at } z_0 \text{. }} \]

\[\eta' \text{ at } f(z_0) = re^{i\theta} \]

\(\eta'(0) \) is obtained from \(\gamma'(0) \) by scaling with factor \(r \) and rotating by angle \(\theta \).

The angle between \(\eta_1'(0) \) and \(\eta_2'(0) \) is equal to the angle between \(\gamma_1'(0) \) and \(\gamma_2'(0) \).

Def: A function \(f: \mathbb{C} \to \mathbb{C} \) is said to be conformal if \(f \) preserves angles (both size and sign).

Thm: \(f: \mathbb{C} \to \mathbb{C} \) is conformal if and only if

1. \(f \) is differentiable on \(G \) (in other words, holomorphic on \(G \))
2. \(f'(z) \neq 0 \quad \forall z \in G \).