Lecture 7 (4/15/2019)

\[e^z = e^{x+iy} = e^x \cos(y) + ie^x \sin(y) \]

\[\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2} \]

\[\cosh z = \frac{e^z + e^{-z}}{2}, \quad \sinh z = \frac{e^z - e^{-z}}{2} \]

(Start with Taylor series for real variable.

\[\cos x, \sin x \]. Then formally plug \(ix \) for \(x \).

\[\tan z = \frac{\sin z}{\cos z} = \frac{e^{iz} - e^{-iz}}{i} \frac{e^{iz} + e^{-iz}}{1} \quad \cot z = \frac{1}{\tan z} \]

How to define logarithm?

\[\log z = w \quad \text{if} \quad e^w = z \]

Since exponential is not one-to-one, logarithm is a multi-valued function.

Solve for \(w \): write \(w = a + ib \)

\[z = re^{i\theta} \]

\[e^w = e^{a+ib} = re^{ib} \]

\[\Rightarrow \begin{cases} e^a = r \\ b = \theta + 2k\pi \end{cases} \]

\[\Rightarrow \begin{cases} a = \ln r \quad \text{(real logarithm)} \\ b = \theta + 2k\pi \end{cases} \]

The equation \(e^w = z \) has no solution \(w \in \mathbb{C} \) only if \(z = 0 \). Therefore, the range of \(e^z \) is \(C \setminus \{0\} \).

Thus,

\[\log z = \ln r + i(\theta + 2k\pi) = \ln |z| + i \arg z \]

Visualize the real and imaginary part of logarithm:

\[z \rightarrow \ln |z| \]

\[\begin{cases} z = r \cos \theta \\ y = r \sin \theta \end{cases} \]

\[\theta = \theta \]

\[x \]

\[\theta = \phi \]

\[y \]
How to make logarithm a function?

Cut a branch of argument, for example the principal branch, where the negative real line $\mathbb{R}_{<0}$ is removed.

$\mathbb{C} \setminus \mathbb{R}_{\leq 0}$

$\text{the graph of function } z \mapsto \text{Arg}(z)$

$\log z = \ln |z| + i \text{Arg} z \sim \text{the principal branch of logarithm}$

Ex.

$log i = ? \quad \log i = ?$

$|i| = 1$

$\arg i = \frac{\pi}{2} + k2\pi$

$\mapsto \log i = \ln 1 + i \left(\frac{\pi}{2} + k2\pi \right) = i \left(\frac{\pi}{2} + k2\pi \right)$

$\quad \frac{\text{real}}{\text{imaginary}}$

$log i = \ln 1 + i \frac{\pi}{2} = i \frac{\pi}{2}$.

Ex.

$log e^i = \ln |e^i| + i \text{arg}(e^i) = \ln 1 + i (1 + k2\pi) = i(1 + k2\pi)$

$(e^i = e^\circ \cos 1)$

Another way: i is a value of $\log e^i$. Thus, $\log e^i = \frac{1}{2} i + k2\pi i : k \in \mathbb{Z}$.

*Comments on branches of the logarithm:

The idea to introduce branches is to make sure that a multi-valued function is single-valued and “continuous” (i.e. without jump).

Logarithm is multi-valued because the argument is multi-valued.

Without graphing the surface of $\text{arg} z$, one can still tell that $\text{arg} z$ is not “continuous” on $\mathbb{C} \setminus \{0\}$, unless one “cuts” the complex plane.
Consider a loop passing \(z \) and enclosing 0 as in the picture. The argument increases in value as one moved from \(z \) along the curve. When one arrives at \(z \) again, the argument increases by \(2\pi \). This is a jump (or "discontinuity").

To avoid such jump (or, to make argument a well-defined single-valued function), one needs to make sure that all curves enclosing 0 are excluded.

One way to do so is to cut the plane \(C \) by a curve \(C \) starting at 0 going to infinity and not intersecting itself.

(0 in this case is called a branch point.)

(\(C \) \(\cup \) \(C \) \(\cup \) \(C \) is called a branch cut.)

A branch cut cuts the surface of \(\arg z \) into infinitely many branches (think of floors in a building).
Power functions

\[f(z) = \sqrt{z} \] is a multi-valued function

\[z = r e^{i\theta} \]

Formally, \(f(z) = \sqrt{r} e^{i \theta/2} \)

As \(z \) moves along a curve (in the left picture), the argument increases. As \(z \) goes back to the original position, the arg. increases by \(2\pi \). Thus, \(\sqrt{z} \) increases by \(\pi \), which flips the sign of \(f(z) = \sqrt{r} \).

A branch cut is needed. Choose, for example, \(C = \mathbb{R}_{\leq 0} \) (the negative real line).

Definition:

\[z^a = e^{a \log z} \]

where \(\log z \) is the principal logarithm.

Implicitly, the definition uses the branch cut \(C = \mathbb{R}_{\leq 0} \).

Ex:

\[i^{1/2} = e^{i \log i} = \exp \left(\frac{1}{2} i \frac{\pi}{2} \right) = \exp \left(i \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \]

\[(-1)^{1/3} = e^{i \log(-1)} = \exp \left(\frac{1}{3} i \pi \right) = \exp \left(i \frac{\pi}{3} \right) = \frac{1}{2} + i \frac{\sqrt{3}}{2} \]