1. Consider function \(f(z) = \frac{\log(z+5)}{\sin z} \).

(a) Determine all singular point(s) of \(f \) enclosed in the circle \(C_4(0) \). Are they isolated singularities?

Note that the roots of \(\sin z = 0 \) always lie on the real axis.

\(\sin z = 0 \) when \(z = k\pi \) where \(k \in \mathbb{Z} \). The only roots of \(\sin z \) enclosed by \(\Gamma = C_4(0) \) are \(z = 0, \pm \pi \).

Function \(f \) also has nonisolated singularities (on the line \(\mathbb{R}_{\leq -5} \)), but these points lie outside of \(\Gamma \).

Conclusion: \(0, \pm \pi \) are the only singularities of \(f \) inside \(\Gamma \). They are isolated singularities.

(b) Which kind of isolated singularity are they (removable, pole, essential)? If they are poles, determine their orders.

When \(z \) is near to 0, \(\log(z+5) \) is near to \(\ln 5 \), and

\[
\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots = z \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \ldots \right)
\]

Thus,

\[
f(z) \approx \frac{\log 5}{z \left(1 - \frac{z^2}{2!} + \ldots \right)} = z^{-1} \frac{\log 5}{1 - \frac{z^2}{2!} + \ldots}
\]

\(\neq 0 \) when \(z = 0 \)

we guess that 0 is a pole of order 1. To verify our guess, we compute

\[
\lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{z \log(z+5)}{\sin z} = \ln 5 \lim_{z \to 0} \frac{1}{\sin \frac{z}{2}}
\]

\(\lim_{z \to 0} \frac{1}{\sin \frac{z}{2}} = \frac{1}{2} \ln 5 \neq 0, \neq \infty
\]

Similarly, \(\pm \pi \) are also poles of order 1 because

\[
\lim_{z \to \pm \pi} (z-\pm \pi) f(z) = \lim_{z \to \pm \pi} \frac{\log(z+5)}{\sin z} = \ln(5 \pm \pi) \lim_{z \to 0} \frac{z-\pi}{\sin z} = \pm \ln(5 \pm \pi)
\]

\(\lim_{z \to \pm \pi} (z-\pm \pi) f(z) = \ldots \)
(c) Compute the residue of f at each of these singularities.

\begin{align*}
\text{use the formula } \quad \text{Res } [f, z_0] = a_{-1} &= \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [(z-z_0)^n f(z)] \\
\text{Here } n &= 1 \text{ for } z_0 = 0, \pm \pi i.
\end{align*}

\begin{align*}
\text{Res } [f, 0] &= \frac{1}{0!} \lim_{z \to 0} \frac{d^0}{dz^0} [(z-0)^1 f(z)] = \lim_{z \to 0} f(z) = \ln 5 \text{ (as computed above)} \\
\text{Res } [f, \pi i] &= \cdots = \lim_{z \to \pi i} (z-\pi i)f(z) = -\ln (5+\pi) \text{ (as computed above)} \\
\text{Res } [f, -\pi i] &= \cdots = \lim_{z \to -\pi i} (z+\pi i)f(z) = -\ln (5-\pi)
\end{align*}

(d) Evaluate the integral $\gamma f(z)dz$ where γ is the circle $C_4(0)$ oriented counterclockwise.

By Cauchy's Residue theorem,

\begin{align*}
\int_{\gamma} f(z)dz &= 2\pi i \left(\text{Res } [f, 0] + \text{Res } [f, \pi i] + \text{Res } [f, -\pi i] \right) \\
&= 2\pi i \left(\ln 5 - \ln (5+\pi) - \ln (5-\pi) \right) \\
&= 2\pi i \ln \frac{5}{25-\pi^2}
\end{align*}
2. Compute $\int_{\gamma} \frac{z+1}{(z-\frac{\pi}{2})^2 \sin z} \, dz$ where γ is the circle $C_2(0)$ oriented counterclockwise.

The only singularities of $f(z) = \frac{z+1}{(z-\frac{\pi}{2})^2 \sin z}$ that lie in γ are $z=0$ and $z=\frac{\pi}{2}$.

We see that $f(z) = \frac{z+1}{(z-\frac{\pi}{2})^2 \sin z} = \frac{z+1}{(z-\frac{\pi}{2})^2 (1-\frac{z^2}{6} + \ldots)} \neq 0$ when $z = \frac{\pi}{2}$

and

$$f(z) = \frac{z+1}{(z-\frac{\pi}{2})^2 (\frac{z^2}{6} + \ldots)} = \frac{z+1}{(z-\frac{\pi}{2})^2 (1-\frac{z^2}{6} + \ldots)} \neq 0 \text{ when } z = 0$$

Thus, we guess that $z = \frac{\pi}{2}$ is a pole of order 2, $z = 0$ is a pole of order 1.

Verify:

$$\lim_{z \to \frac{\pi}{2}} (z-\frac{\pi}{2}) f(z) = \lim_{z \to \frac{\pi}{2}} \frac{z+1}{\sin z} = \frac{\pi/2 + 1}{1} \neq 0, \neq \infty$$

$$\lim_{z \to 0} z f(z) = \lim_{z \to 0} \frac{(z+1)z}{(z-\frac{\pi}{2})^2 \sin z} = \frac{1}{(\frac{\pi}{2})^2} \lim_{z \to 0} \frac{z+1}{\sin z} \frac{1}{\sin \frac{\pi}{2}} \neq 0, \neq \infty$$

Next,

$$\text{Res } [f, \frac{\pi}{2}] = \frac{1}{1!} \lim_{z \to \frac{\pi}{2}} \frac{d}{dz} \left[(z-\frac{\pi}{2}) f(z) \right] = \lim_{z \to \frac{\pi}{2}} \frac{d}{dz} \left(\frac{z+1}{\sin z} \right) \neq 0$$

$$\text{Res } [f, 0] = \frac{1}{0!} \lim_{z \to 0} z f(z) = \frac{4}{\pi^2} \text{ (as computed above).}$$

By Cauchy's Residue theorem,

$$\int f(z) \, dz = 2\pi i \left(\text{Res } [f, \frac{\pi}{2}] + \text{Res } [f, 0] \right) = 2\pi i \left(1 + \frac{4}{\pi^2} \right)$$
3. Compute \(\gamma z^2 \sin\left(\frac{1}{z}\right)dz\) where \(\gamma\) is the boundary of square with vertices at \(\pm 1 \pm i\) negatively oriented.

The only possible singularity of \(f(z) = z^2 \sin\left(\frac{1}{z}\right)\) is \(z=0\). The function is holomorphic everywhere else. Thus, \(f(z)\) can be written as a Laurent series around \(0\):

Let's try to write a Laurent series of \(f(z)\):

\[
\sin w = w - \frac{w^3}{3!} + \frac{w^5}{5!} - \ldots
\]

Now substitute \(w = \frac{1}{z} = z^{-1}\):

\[
\sin \frac{1}{z} = \frac{1}{z} - \frac{z^{-3}}{3!} + \frac{z^{-5}}{5!} - \ldots
\]

Thus,

\[
f(z) = z^2 \sin \frac{1}{z} = z - \frac{z^{-1}}{3!} + \frac{z^{-3}}{5!} - \ldots
\]

This is the Laurent series of \(f(z)\) around \(0\). (And we see that \(0\) is an essential singularity)

\[
\text{Res}[f; 0] = \text{coefficient of } z^{-1} = -\frac{1}{6}
\]

By Cauchy's Residue theorem,

\[
\oint_{\gamma} f(z)dz = -2\pi i \text{ Res}[f; 0] = -2\pi i \left(-\frac{1}{6}\right) = \frac{\pi i}{3}
\]

positively oriented loop