Exercise 1. Let G be an open subset of \mathbb{C}. Let $f : G \to \mathbb{C}$ be a holomorphic function. Let $a \in G$. Consider the function

$$g(z) = \begin{cases} \frac{f(z) - f(a)}{z - a} & \text{if } z \neq a, \\ f'(a) & \text{if } z = a. \end{cases}$$

(a) Show that g is a continuous function on G.

Answer: For $z \in G$, $z \neq a$, the function $g(z) = \frac{f(z) - f(a)}{z - a}$ is a multiplication of two continuous functions, namely, $f(z) - f(a)$ and $\frac{1}{z - a}$. Thus g is also continuous at any $z \neq a$. Let us show the continuity of g at $z = a$. We have

$$\lim_{z \to a} g(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = f'(a) = g(a).$$

Therefore, g is continuous at $z = a$. In conclusion, g is continuous on G.

(b) Let us write f in standard form as $f(z) = u(x, y) + iv(x, y)$ where $z = x + iy$. Write g in standard form.

Answer: We may assume $a = 0$ for simplicity.

Let us simply write $u(x, y)$ and $u(0, 0)$ as u and u_0 respectively. Similarly for v and v_0. For $z \neq 0$, we have

$$g(z) = g(z) = \frac{f(z) - f(0)}{z} = \frac{(u + iv) - (u_0 + iv_0)}{x + iy} = \frac{(u - u_0) + iv - v_0}{x + iy}$$

$$= \frac{x(u - u_0) + y(v - v_0)}{x^2 + y^2} + i \frac{x(v - v_0) - y(u - u_0)}{x^2 + y^2}$$

For $z = 0$,

$$g(0) = f'(0) = (\partial_x u)(0, 0) + i (\partial_y v)(0, 0)$$

Therefore,
\[g(z) = \begin{cases}
\frac{x(u - u_0) + y(v - v_0)}{x^2 + y^2} + i \frac{x(v - v_0) - y(u - u_0)}{x^2 + y^2} & z \neq 0 \\
(\partial_x u)(0,0) + i(\partial_x v)(0,0) & z = 0.
\end{cases} \]

(c) Show that \(g \) is holomorphic on \(G \).

Answer: Because \(f(z) - f(a) \) is differentiable on \(G \) and \(\frac{1}{z-a} \) is differentiable on \(G \setminus \{0\} \), the product \(\frac{f(z) - f(a)}{z-a} \) is differentiable on \(G \setminus \{0\} \). Therefore, \(g \) is differentiable at every \(z_0 \in G \), \(z_0 \neq 0 \).

We now show that \(g \) is differentiable at \(a \). Let us assume \(f(a) = a = 0 \) for simplicity. We will show that the Cauchy–Riemann equations are satisfied at \((0,0)\). Based on the formula we obtained in part (b), \(g(z) = U(x,y) + iV(x,y) \) where

\[
U(x,y) = \begin{cases}
\frac{xu(x,y) + yv(x,y)}{x^2 + y^2}, & (x,y) \neq (0,0) \\
(\partial_x u)(0,0), & (x,y) = (0,0).
\end{cases}
\]

\[
V(x,y) = \begin{cases}
\frac{xv(x,y) - yu(x,y)}{x^2 + y^2}, & (x,y) \neq (0,0) \\
(\partial_x v)(0,0), & (x,y) = (0,0).
\end{cases}
\]

Then

\[
\partial_x U(0,0) = \lim_{h \to 0} \frac{U(h,0) - U(0,0)}{h} = \lim_{h \to 0} \frac{\frac{u(h,0)}{h} - \partial_x u(0,0)}{h} = \lim_{h \to 0} \frac{u(h,0) - h\partial_x u(0,0)}{h^2} = \lim_{h \to 0} \frac{\partial_x u(h,0) - \partial_x u(0,0)}{2h} \quad (L'Hopital Rule)
\]

\[
\partial_y U(0,0) = \lim_{h \to 0} \frac{V(0,h) - V(0,0)}{h} = \lim_{h \to 0} \frac{\frac{-u(0,h)}{h} - \partial_y v(0,0)}{h} = \lim_{h \to 0} \frac{-u(0,h) + h\partial_y u(0,0)}{h^2} = \lim_{h \to 0} \frac{\partial_y u(0,h) + \partial_y u(0,0)}{2h} \quad (L'Hopital Rule)
\]
According to Problem 4, \(\partial_{xx} u = -\partial_{yy} u \). Thus, \(\partial_x U(0,0) = \partial_y V(0,0) \). Similarly,

\[
\partial_y U(0,0) = \lim_{h \to 0} \frac{U(0,h) - U(0,0)}{h} = \lim_{h \to 0} \frac{\frac{v(0,h)}{h} - \partial_x u(0,0)}{h} = \lim_{h \to 0} \frac{v(0,h) - h \partial_y v(0,0)}{h^2}, \quad \text{(Cauchy-Riemann eqn’s for } u \text{ and } v) \\
= \lim_{h \to 0} \frac{\partial_y v(0,h) - \partial_y v(0,0)}{2h} = \frac{1}{2} \partial_{yy} v(0,0)
\]

and

\[
\partial_x V(0,0) = \lim_{h \to 0} \frac{V(h,0) - V(0,0)}{h} = \lim_{h \to 0} \frac{\frac{v(h,0)}{h} - \partial_x v(0,0)}{h} = \lim_{h \to 0} \frac{v(h,0) - h \partial_x v(0,0)}{h^2} = \lim_{h \to 0} \frac{\partial_x v(h,0) - \partial_x v(0,0)}{2h} = \frac{1}{2} \partial_{xx} v(0,0)
\]

According to Problem 4, \(\partial_{xx} v = -\partial_{yy} v \). Thus, \(\partial_y U(0,0) = -\partial_x V(0,0) \).

So \(g \) is differentiable at 0. We have showed that \(g \) is differentiable everywhere in \(G \). We now explain why \(g \) is holomorphic on \(G \).

For each \(z_0 \in G \), there is an open disk \(D_r(z_0) \) centered at \(z_0 \) with radius \(r \) that lies entirely in \(G \). This is because \(G \) is an open set. We know that \(g \) is differentiable everywhere in this disk. Thus, \(g \) is holomorphic at \(z_0 \). Because \(z_0 \) is arbitrary in \(G \), we conclude that \(g \) is holomorphic on \(G \).

\[\square\]

Exercise 2. Let \(G \) be an open connected subset of \(\mathbb{C} \). Let \(f : G \to \mathbb{C} \) be a holomorphic map on \(G \). Suppose \(f'(z) = 0 \) for all \(z \in G \). We want to show that \(f \) is a constant function. Follow the steps:

(a) Write \(f \) in standard form \(f(z) = u(x,y) + iv(x,y) \). Show that \(u_x = u_y = v_x = v_y = 0 \) in \(G \).

Answer: We know that \(f'(z) = u_x + iv_x \). Therefore, \(u_x = v_x = 0 \) everywhere in \(G \). By Cauchy–Riemann equations, \(u_y = -v_y = 0 \) and \(v_y = u_x = 0 \).

(b) Show that \(u \) and \(v \) are constant functions.
Answer: Fix \(z_0 = x_0 + iy_0 \in G \). Let \(w = a + ib \) be an arbitrary point in \(G \). Since \(G \) is open and connected, there is a rectilinear curve lies entirely in \(G \) that starts at \(z_0 \) and ends at \(w \). This rectilinear curve consists of horizontal and vertical line segments, let us denote the joint points by \(z_k = x_k + iy_k \), \(k = 0, 1, \ldots, n \), where \(z_n = a + ib \). (See the graph below)

\[
\text{In other words, each line segment } [z_k, z_{k+1}], k = 0, 1, \ldots, n-1, \text{ is either a horizontal or vertical line.}
\]

If the segment that connect \(z_k \) to \(z_{k+1} \) is horizontal then \(u(x_{k+1}, y_{k+1}) = u(x_k, y_k) \) because \(u_x = 0 \). If the segment that connect \(z_k \) to \(z_{k+1} \) is vertical then \(u(x_{k+1}, y_{k+1}) = u(x_k, y_k) \) because \(u_y = 0 \). Hence,
\[
u(x_{k+1}, y_{k+1}) = u(x_k, y_k)
\]

Since this holds for all \(k \in \{0, 1, 2, \ldots, n\} \), we have
\[
u(x_0, y_0) = u(x_1, y_1) = \cdots = u(x_n, y_n) = u(a, b)
\]

Similarly, \(v(x_0, y_0) = v(a, b) \)

Finally, since this holds for arbitrary \(w = a + ib \in G \), we conclude that \(u \) and \(v \) are constant functions on \(G \). \(\square \)

(c) Is \(f \) necessarily a constant function if the condition "\(G \) is a connected subset" is dropped?

Answer: Let
\[
A := \{ z = x + iy : x < -1 \}
\]
and
\[
B := \{ z = x + iy : x > 1 \}
\]
Define \(G := A \cup B \). See Figure 2

\[
\text{RegionPlot} \[x < -1 || x > 1, \{ x, -3, 3 \}, \{ y, -2, 2 \}, \\
\text{AspectRatio} \to \text{Automatic} \]

4
A point in set A cannot be connected to a point in set B by a path that lies in G. Therefore, G is not connected.

Consider the function

$$f(z) = \begin{cases}
0 & \text{if } z \in A \\
1 & \text{if } z \in B
\end{cases}$$

We see that $f'(z) = 0$. However, f is not constant in G (although it is constant in A and B).

Exercise 3. Consider $f(z) = \frac{1}{z}$. We know that $F(z) = \log z$ is an antiderivative of f. To be more precisely, F is an antiderivative of f in the region $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. In this problem, we will see that f has many other antiderivatives (differing f by a non-constant) in other regions.

(a) Show that any antiderivative of f in $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ must be $F(z) + c$ where c is a complex constant.

Answer: Let $G(z)$ be any antiderivative of f in $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Note that $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ is open and connected and G is holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Then

$$(G - F)'(z) = G'(z) - F'(z) = \frac{1}{z} - \frac{1}{z} = 0$$

Since $G(z) - F(z)$ is also holomorphic on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$, Problem 2 tells us that $G(z) - F(z)$ is constant, say, c. Thus, $G(z) - F(z) = c$ or $G(z) = F(z) + c$.

(b) For $\theta \in (-\pi, \pi]$, denote $G(z) = \log (e^{i\theta}z)$. Describe the region of continuity of G. Show that $G' = f$ in this region. Is the difference $G - F$ a constant function?

Answer: $\log(e^{i\theta}z)$ is discontinuous at those z such that

$$e^{i\theta}z \in \mathbb{R}_{\leq 0}$$

write $z = re^{i\beta}$, then
\[
e^{i\theta}z = re^{i(\theta+\beta)} \in \mathbb{R}_{\leq 0} \iff \theta + \beta = \pi \pmod{2\pi}
\]

Thus, \(G\) is continuous everywhere except on the ray \(\text{Arg} z = \pi - \theta\) (the green line in Figure 2):

![Figure 2:](image)

Using differentiation rule
\[
G'(z) = (\log(e^{i\theta}z))' = \frac{1}{e^{i\theta}z}e^{i\theta} = \frac{1}{z}
\]

which shows that \(G' = f\) in the region \(\mathbb{C} \setminus \{z = re^{i\beta} : \beta = \pi - \theta\}\).

\(G - F\) is a holomorphic function in the region \(\Omega = A \cup B\) as shown in Figure 2. It is not a constant function on \(\Omega\) unless \(\theta = 0\). To see this, let us take \(\theta = \pi\) for example.

For \(z_1 = e^{-i\pi/2}\), we have
\[
\log(e^{i\theta}z_1) = \log(e^{i\pi/2}) = i\frac{\pi}{2}
\]
so \(G(z_1) - F(z_1) = i\frac{\pi}{2} - i\frac{-\pi}{2} = i\pi\).

For \(z_2 = e^{-i3\pi/2}\), we have
\[
\log(e^{i\theta}z_2) = \log(e^{-i\pi/2}) = -i\frac{\pi}{2}
\]
so \(G(z_2) - F(z_2) = -i\frac{\pi}{2} - i\frac{\pi}{2} = -i\pi\).

Thus, \(G - F\) is not a constant function on \(\Omega\). However, it is a constant function on \(A\) and on \(B\). Note that \(\Omega\) is not a connected set because it is impossible to connect a point in \(A\) to a point in \(B\) by any continuous path. This is another example (in addition to the example given in Problem 2, Part (c)) to show that a function whose derivative is equal to zero on a disconnected set may not be a constant function.

(c) Show that \(f\) has no antiderivatives in the region \(\mathbb{C} \setminus \{0\}\).

Answer: Suppose by contradiction that there is an antiderivative of \(f\) in the region \(\mathbb{C} \setminus \{0\}\). Let us call it \(H(z)\). We have \(H'(z) = f(z)\) for all \(z \in \mathbb{C} \setminus \{0\}\).
In particular, $H(z)$ is an antiderivative of $f(z)$ in the region $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. According to Part (a), $H(z) = F(z) + c$ in the region $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$. Because F is discontinuous on the negative real line (jumping by $2\pi i$ across the negative real line), so must be H. On the other hand, H is holomorphic everywhere on $\mathbb{R}_{< 0}$, so it must be continuous everywhere on $\mathbb{R}_{< 0}$. This is a contradiction.

A function $u(x, y)$ is said to be **harmonic** in a region G if the Laplacian $\Delta u = u_{xx} + u_{yy}$ is equal to zero for all $(x, y) \in G$.

Exercise 4. Let $f(z) : G \to \mathbb{C}$ be a holomorphic function on G. Show that the real part and imaginary part of f are harmonic functions.

Answer: Write $f(z) = u(x, y) + iv(x, y)$.
Since f is differentiable in G, the Cauchy-Riemann equations holds:

$$u_x = v_y; \quad u_y = -v_x$$

Thus,

$$u_{xx} + u_{yy} = v_{xy} + (-v_{yx}) = 0$$

and

$$v_{xx} + v_{yy} = -u_{xy} + u_{yx} = 0$$

Exercise 5. Find an entire function f such that $f(0) = 1 - 2i$ and the real part of f is $u(x, y) = e^{-y} \cos(x) - y$.

Answer: Let $v(x, y)$ be the imaginary part of $f(z)$. Since f is entire, it must satisfy the Cauchy-Riemann equations. Thus,

$$v_x = -u_y = e^{-y} \cos(x) + 1$$

and

$$v_y = u_x = -e^{-y} \sin(x)$$

Integrating (5) with respect to x, we get

$$v(x, y) = e^{-y} \sin(x) + x + C(y).$$

Differentiate both sides with respect to y:

$$v_y = -e^{-y} \sin(x) + C'(y).$$

Comparing this equation with (6), we get $C'(y) = 0$. Thus, $C(y) = c$ for some constant c. We obtain

$$v(x, y) = e^{-y} \sin(x) + x + c$$
To find \(c \), we use the fact that \(f(0) = 1 - 2i \). This equation implies \(c = -2 \).
Therefore,

\[
v(x, y) = e^{-y} \sin(x) + x - 2
\]

So,

\[
f(z) = (e^{-y} \cos(x) - y) + i (e^{-y} \sin(x) + x - 2)
\]

If one wishes to obtain a neat formula in terms of \(z \), one can proceed as follows:

\[
f(z) = e^{-y}(\cos x + i \sin x) + (-y + ix) - 2i \\
= e^{-y+ix} + (-y + ix) - 2i \\
= e^{i(x+iy)} + i(x + iy) - 2i \\
= e^{ix} + iz - 2i.
\]

The above procedure is simply cosmetic!