A complex number \(z \) can be represented in standard form \(z = a + ib \) or polar form \(z = re^{i\theta} \). One form can be converted to the other. Given the polar form, it is quite easy to get the standard form because

\[
\begin{align*}
a &= r \cos \theta, \\
b &= r \sin \theta.
\end{align*}
\]

Given the standard form, one can find \(r = \sqrt{a^2 + b^2} \). The argument \(\theta \) is a little more tricky:

\[
\begin{align*}
\cos \theta &= \frac{a}{r} = \frac{a}{\sqrt{a^2 + b^2}}, \\
\sin \theta &= \frac{b}{r} = \frac{b}{\sqrt{a^2 + b^2}}.
\end{align*}
\]

Let’s consider an example \(z = -1 + 2i \).

\[
r = |z| = \sqrt{(-1)^2 + 2^2} = \sqrt{5}.
\]

\[
\cos \theta = -\frac{1}{\sqrt{5}}, \quad \sin \theta = \frac{2}{\sqrt{5}}.
\]

We see that the angle \(\theta \) lies in between \(\frac{3\pi}{2} \) and \(\pi \). The \(\arccos \) function goes values in the range \([0, \pi]\). Thus,

\[
\theta = \arccos \left(-\frac{1}{\sqrt{5}} \right) = 2.0344439....
\]

Let’s consider another example \(w = -1 - 2i \).

\[
r = \sqrt{(-1)^2 + (-2)^2} = \sqrt{5}
\]

\[
\cos \theta = -\frac{1}{\sqrt{5}}, \quad \sin \theta = -\frac{2}{\sqrt{5}}.
\]

\(\theta \) is in the range of \([\pi, \frac{3\pi}{2}]\) according to the picture. Thus,

\[
\theta = -\arccos \left(\frac{1}{\sqrt{5}} \right) = -2.034444....
If \(z = r e^{i\theta} \) then \(\theta \) is called an argument of \(z \). It is unique modulo \(2\pi \).

\[
\arg(z) = \theta + 2k\pi \quad (k \in \mathbb{Z})
\]

\[
= \{ \theta, \theta + 2\pi, \theta - 2\pi, \theta + 4\pi, \ldots \}
\]

"arg" is a multi-valued “function”. It is not a function in usual sense. It has connection with the logarithm function. We will discuss in detail later.

\(\text{Arg}(z) \) is the value of argument that lies in \((-\pi, \pi] \). It is called the principal argument of \(z \).

\(\text{Ex:} \)

\[
\arg(-1+2i) = 2.0344... + k2\pi \quad (k \in \mathbb{Z})
\]

\[
\text{Arg}(-1+2i) = 2.0344... \quad \in [-\pi, \pi)
\]

\[
\arg(-1-2i) = -2.0344... + k2\pi \quad (k \in \mathbb{Z})
\]

\[
\text{Arg}(-1-2i) = -2.0344...
\]

* Complex conjugate:

For \(z = a+ib \), the number \(\bar{z} = a-ib \) is called is called the complex conjugate of \(z \).

\[
\text{Geometrically,} \ z \ \text{and} \ \bar{z} \ \text{are mirror reflection of each other with respect to the x-axis.}
\]

\[
|z| = |\bar{z}| = r = \sqrt{a^2 + b^2}
\]

If \(\theta \) is an argument of \(z \) then \(-\theta\) is an argument of \(\bar{z} \). We also see that

\[
\bar{z} = (a+bi)(a-ib) = a^2 + b^2 = |z|^2.
\]

* Geometric interpretation of complex multiplication:

Consider two complex numbers written in standard form

\[
z = a+ib, \quad w = c+id.
\]
We know how to multiply them using the rule $i^2 = -1$.

$$zw = ac - bd + i(ad + bc)$$

The geometric meaning of multiplication is more clear in the polar form. Write $z = r e^{i\theta}$ and $w = s e^{i\phi}$. Then

$$zw = (re^{i\theta})(se^{i\phi}) = rs e^{i(\theta + \phi)}.$$

We have

$$e^{i\theta} e^{i\phi} = (\cos \theta + i\sin \theta)(\cos \phi + i\sin \phi)$$

$$= (\cos \theta \cos \phi - \sin \theta \sin \phi) + i(\sin \theta \cos \phi + \cos \theta \sin \phi)$$

$$= \cos(\theta + \phi) + i\sin(\theta + \phi)$$

$$= e^{i(\theta + \phi)}.$$

Therefore,

$$zw = rs e^{i(\theta + \phi)}.$$ \(\star\)

The rule of thumb is: to multiply two complex numbers, we multiply their modules to get the modulus, and add their arguments to get the argument.

Formula \(\star\) has a helpful consequence. Suppose we are to compute \((-1+2i)^{10}\).

Of course we can multiply $-1+2i$ by itself ten times, using distribution rule and the rule $i^2 = -1$. This practice takes a long time. A more efficient way is as follows.

First, we express $z = -1 + 2i$ in polar form: $z = \sqrt{5} e^{i\theta}$.

Then we raise z to power 10 by raising $r = \sqrt{5}$ by power 10 and multiplying $\theta = 2.0344\ldots$ by 10.

$$z^{10} = (\sqrt{5})^{10} e^{i20.344\ldots} = 3125 e^{i20.344\ldots}$$

polar form of z^{10}
In general, if \(n \) is an integer then
\[
(r e^{i\theta})^n = r^n e^{i\theta n}
\]
This is known as de Moivre's formula (~1722).

Now how do we take roots of a complex number? For example, how do we find \(\sqrt[3]{-1+2i} \)?

Let us put \(w = \sqrt[3]{-1+2i} \). We want to solve for complex number \(w \) from the equation \(w^3 = -1+2i \). Write \(w \) in polar form:
\[
w = r e^{i\theta}
\]
where \(r \) and \(\theta \) are to be determined. We also write \(-1+2i\) in polar form:
\[
-1+2i = \sqrt{5} e^{i\theta}
\]
where \(r = \sqrt{5} \) and \(\theta = 2.0344... \) (as computed earlier). The equation \(w^3 = -1+2i \) becomes
\[
s^3 e^{i3\theta} = \sqrt{5} e^{i\theta}.
\]
For two complex numbers to be equal to each other, the moduli must be equal and the arguments must be equal in modulo \(2\pi \).
Thus,
\[
\begin{align*}
s^3 &= \sqrt{5} \\
3\theta &= \theta + 2k\pi \quad \text{(for some integer } k)\end{align*}
\]
We get
\[
\begin{align*}
s &= \sqrt[3]{5} \quad \text{(regular third root of a real number)} \\
\theta &= \frac{\theta}{3} + k \frac{2\pi}{3}.
\end{align*}
\]
We see that there are multiple values of \(w \) because there are multiple values of \(\theta \). Let us put the values of \(w \) on the complex plane.

We see that there are only 3 values of \(\theta \). They are equally spaced on the circle of radius \(s = \sqrt{5} \).
In conclusion,
\[\sqrt[4]{-1 + 2i} = \sqrt[5]{e^{i(\frac{\pi}{4} + k \frac{2\pi}{5})}} \] with \(k = 0, 1, 2 \).

One can use the same method to find the \(n \)-th root of a complex number \(z = r e^{i \theta} \).
\[\sqrt[n]{z} = \sqrt[n]{r} e^{i \left(\frac{\theta}{n} + k \frac{2\pi}{n} \right)} \] with \(k = 0, 1, 2, \ldots, n-1 \).