Inverse trigonometric functions:

\[\sin \theta = x \quad \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}] \]

There are infinitely many such \(\theta \)’s. However, there is only one \(\theta \) in the interval \(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \).

\[\arcsin : [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ is the inverse of the } \sin \text{ function.} \]

\[\arcsin x = \theta \quad \Rightarrow \quad \sin \theta = x \]

What is the derivative of \(\arcsin \) ?

\[(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \] (a consequence of the chain rule)

One can define the inverse of the tangent function likewise:

\[\tan \theta = x \in \mathbb{R} \]

There are infinitely many such \(\theta \)’s.

\[\arctan : \mathbb{R} \rightarrow \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \]

is the inverse function of \(\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R} \)

\[y = \tan x \quad \text{take reflection about the line } y = x \]

\[y = \arctan x \]
\[(\arctan u)' = \frac{1}{1+u^2}\]

Ex: Compute
\[\int_0^1 \frac{1}{1 + x^2} \, dx\]

\[= \arctan x \bigg|_0^1 = \frac{\pi}{4} - 0 = \frac{\pi}{4}\]

Ex:
Compute
\[\int_0^3 \frac{1}{4 + 9x^2} \, dx\]

\[I = \frac{1}{4} \int_0^3 \frac{1}{1 + \frac{9x^2}{4}} \, dx\]

Let \(u = \frac{3x}{2}\), \(du = \frac{3}{2} \, dx\)

\[I = \frac{1}{4} \int_{3/2}^{9/4} \frac{1}{1 + u^2} \frac{2}{3} \, du\]

\[= \frac{1}{6} \arctan u \bigg|_{3/2}^{5/4}\]

\[= \frac{1}{6} \left(\arctan \left(\frac{5}{4} \right) - \arctan \left(\frac{3}{2} \right) \right)\]

Ex:

\[I = \int_0^1 \frac{1}{\sqrt{4-x^2}} \, dx\]

Let \(u = \frac{x}{2}\), \(du = \frac{1}{2} \, dx\)

\[\frac{1}{\sqrt{4-u^2}} \, du = \frac{1}{\sqrt{4-4u^2}} \, 2 \, du = \frac{1}{\sqrt{1-u^2}} \, du\]
\[I = \int_0^1 \frac{1}{\sqrt{1-u^2}} \, du = \arcsin u \bigg|_0^1 = \arcsin \frac{1}{2} - \arcsin 0 = \frac{\pi}{6} \]

Compute volume by slicing:

Consider a solid that extends from \(x = a \) and \(x = b \). Suppose the cross section area at position \(x \) is \(A(x) \).

Volume is approximated by

\[\sum A(x) \Delta x \]

This is a Riemann sum of the function \(A(x) \) on the interval \([a, b]\).

Thus, the exact volume is

\[V = \int_a^b A(x) \, dx \]

Ex:

Find volume of the cone with height \(h \) and circular base of radius \(R \).

Cross section at position \(x \) is a circle with radius \(r \).

\[\tan \theta = \frac{R}{h} = \frac{r}{h-x} \]

Thus,

\[r = \frac{R}{h} (h-x) \]

\[A(x) = \pi r^2 = \frac{\pi R^2}{h^2} (h-x)^2 \]
Volume of the cone = \(\int_0^h A(x) \, dx = \frac{\pi R^2}{h^2} \int_0^h (h-x)^2 \, dx \)

\[= \frac{\pi R^2}{h^2} \left[-\frac{(h-x)^3}{3} \right]_0^h \]

\[= \frac{\pi R^2}{h^2} \frac{h^3}{3} \]

\[= \frac{\pi R^2 h}{3} \]