Lecture 13 (2/4/2019)

\[f : \mathbb{R}^n \to \mathbb{R}^n \]

Vector \(v \neq 0 \) is eigenvector of \(f \) if \(f(v) \) is parallel to \(v \), i.e.,
\[f(v) = \lambda v \text{ for some scalar } \lambda. \]

Note: \(f(0) = 0 \)

\[\text{Why?} \quad f(0) = f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0. \]

Ex: If \(f(0) = 0 \) and \(v \neq 0 \) then \(v \) is an eigenvector of \(f \).

\[\text{Why?} \quad f(v) = \lambda v \]

\[\text{eigenvalue} \]

Ex:
\[I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[I_2v = v \quad \text{for all } v \in \mathbb{R}^2 \]

Every non-zero vector in \(\mathbb{R}^2 \) is an eigenvalue of \(I_2 \).

The corresponding eigenvalue is \(\lambda = 1 \).

Ex: \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is the projection onto the line \(y = 2x \).

There are 2 directions that are preserved under \(f \):
\[v_1 = (1, 2) \text{ --- parallel to the line} \]
\[v_2 = (-2, 1) \text{ --- perpendicular to the line} \]

\[f(v_1) = \lambda v_1 \]

\[\text{eigenvalue} = 1 \]
\[f(v_2) = 0 = \lambda v_2 \]

\[\text{eigenvalue} = 0 \]

In this case, \(f \) has two linearly independent eigenvectors.
Ex: \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is the rotation by 20° counterclockwise.

No directions are preserved under \(f \).

\(f \) has no real eigenvectors. But it has two complex eigenvectors.

Ex: \(f: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \), \(f(x, y) = (x+y, y) \)

Only the vectors on the \(x \)-axis has direction preserved under \(f \). The only eigenvector is \(v = (1, 0) \) (and scalar multiples of \(v \)).

\(f(v) = \lambda v \)

Eigenvalue is \(\lambda = 1 \)

How to compute eigenvectors/eigenvalues of a linear map/matrix?

\[Av = \lambda v \quad \Rightarrow \quad (A - \lambda \mathbf{I}_n) v = 0 \]

\(n \times n \) non-zero matrix, \(n \times 1 \) column vector

This equation has two solutions: \(v \) and \(0 \).

The coefficient matrix \(A - \lambda \mathbf{I}_n \) must fail to be invertible.

\[\text{det} (A - \lambda \mathbf{I}_n) = 0 \]

Procedure:

1. Write matrix \(A - \lambda \mathbf{I}_n \).
2. Compute \(\text{det} (A - \lambda \mathbf{I}_n) \). This should be a polynomial of degree \(n \).
3. Find the roots of this polynomial. These are the eigenvalues of \(A \).
4. To each eigenvalue \(\lambda \), find the corresponding eigenvector by solving the equation \((A - \lambda \mathbf{I}_n) v = 0 \). This equation should have infinitely many solutions.
Example:

\[A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \]

\[A - \lambda I_2 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 1-\lambda & 2 \\ 2 & 1-\lambda \end{bmatrix} \]

\[\det(A - \lambda I_2) = (1-\lambda)^2 - 4 = (1-\lambda)(3-\lambda) \]

Two roots are \(\lambda_1 = -1 \) and \(\lambda_2 = 3 \). These are the two eigenvalues of \(A \).

Find corresponding eigenvectors:

- For \(\lambda = -1 \):

 We will solve for \(\mathbf{v} \) from the equation \((A - (-1)I_2)\mathbf{v} = 0\).

 Augmented matrix:

 \[\begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \end{bmatrix} \]

 \[R_2 \rightarrow R_2 - R_1 \]

 \[\begin{bmatrix} 2 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \] (REF)

 This column has no pivot entries

 \(x_2 = t \) (free variable)

 \(x_1 = -t \) (from the first row)

 The eigenvectors corresponding to eigenvalue \(\lambda = -1 \) are \((t, t) = t(-1, 1)\).

- For \(\lambda = 3 \):

 Do similarly.

Example:

\[A = \begin{bmatrix} 1 & -1 \\ 5 & -3 \end{bmatrix} \]

\[\det(A - \lambda I_2) = \begin{vmatrix} 1-\lambda & -1 \\ -3 & -3-\lambda \end{vmatrix} = \lambda^2 + 2\lambda + 2 \]

Two complex roots:

\(\lambda_1 = -1 + i \)

\(\lambda_2 = -1 - i \)

Continue next time.