Homework 1
Due 01/17/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example “This leads to”, “Therefore”, “We want to show”, etc.

1. Let V be a vector space over a field F (which is \mathbb{Q}, \mathbb{R}, or \mathbb{C}). Use the axioms of vector space to show the following properties. Make sure to mention which axiom(s) you use.

 (a) (Cancellation law) If $u_1, u_2, v \in V$ and $u_1 + v = u_2 + v$, then $u_1 = u_2$.

 (b) (Uniqueness of zero element) If a and b are neutral elements of V, i.e.

 \[a + v = v \quad \forall v \in V, \]
 \[b + v = v \quad \forall v \in V, \]

 then $a = b$.

 Note: Because the neutral element is unique, it is denoted by 0 and is called the zero vector.

 (c) (Scaling by 0)

 \[0v = 0 \quad \forall v \in V. \]

 (d) (Additive inverse) If $v, w \in V$ satisfy $v + w = 0$ then $w = (-1)v$ (vector v scaled by factor -1).

 *Note: the additive inverse of v is denoted as $-v$."

2. On the set of complex numbers \mathbb{C}, we define another product rule as follows:

 \[z \ast v = \bar{z}v \quad \forall z, v \in \mathbb{C}. \]

 The star denotes the new product rule. The product on the right hand side is the usual product of complex numbers. Here \bar{z} denotes the complex conjugate of z. Show that $V = \mathbb{C}$ is a vector space over $F = \mathbb{C}$ under the usual addition and the new product rule.

3. Let F be a field of numbers. Put

 \[V = \{ A \in M_{2 \times 2}(F) : A + A^T = 0 \}. \]

 (a) Show that V is a vector space over F. Here A^T denotes the transpose of matrix A.

 (b) Find a basis and the dimension of V.

 Do the following problem for 6 bonus points.

4. Let $V = \mathbb{Q}^{(1,3) \cap \mathbb{Q}}$, which is the set of all functions from $(1,3) \cap \mathbb{Q}$ to \mathbb{Q}. Recall that V is a vector space over $F = \mathbb{Q}$.

 (a) Do the functions $f(x) = \frac{x}{x-2}$ and $g(x) = \sqrt{x}$ belong to V?

 (b) Consider three functions $f_1(x) = x - 1$, $f_2(x) = x$, and $f_3(x) = 1/x$. They are vectors in V. Show that f_1, f_2, f_3 are linearly independent.