Homework 3
Due 02/03/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example “This leads to”, “Therefore”, “We want to show”, etc.

1. Consider a map \(G : P_2(\mathbb{R}) \to P_2(\mathbb{R}) \) given by \(G(u) = (x+1)u' - 2u \).
 (a) Show that \(G \) is a linear map.
 (b) Find a basis and the dimension of null(\(G \)). What is the nullity of \(G \)?
 (c) Find a basis and the dimension of range(\(G \)). What is the rank of \(G \)?
 (d) Is \(G \) a monomorphism, epimorphism, isomorphism or none of them?

2. Let \(V = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{C}) : a + b + c + id = 0 \} \).
 Consider a linear map \(H : V \to P_2(\mathbb{C}) \) given by
 \[
 H \left(\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \right) = (a + b)z^2 + (b + c)z + (c + d).
 \]
 (a) Show that \(V \) is a subspace of \(M_{2\times 2}(\mathbb{C}) \).
 (b) Find a basis of \(V \).
 (c) Find a matrix representation of \(H \).
 (d) Find the nullity of \(H \).
 (e) Find the rank of \(H \).
 Hint: use the rank-nullity theorem

3. Let \(V \) be the subspace of \(M_{2\times 2}(\mathbb{R}) \) consisting of all matrices in which the sum of entries on each row is equal to 0. Let \(W \) be the subspace of \(M_{2\times 2}(\mathbb{R}) \) consisting of all matrices in which the sum of entries on each column is equal to 0. Find a basis of \(V + W \).

Do the following problem for 6 bonus points.

4. Let \(V \) be a vector space with basis \(B_1 = \{ v_1, v_2, \ldots, v_7 \} \), and \(W \) be a vector space with basis \(B_2 = \{ w_1, w_2, \ldots, w_6 \} \). Let \(f : V \to W \) be a linear map given by

\[
\begin{align*}
 f(v_1) &= w_1 + w_2 - w_4 + 2w_6, \\
f(v_2) &= 3w_1 - w_2 - w_3 + w_5 - 4w_6, \\
f(v_3) &= 2w_2 + 5w_3 - w_4 + 7w_5 - w_6, \\
f(v_4) &= w_1 + w_3 - w_4 + w_6, \\
f(v_5) &= w_2 - 4w_4 + 5w_5 + 3w_6, \\
f(v_6) &= w_1 + w_2 + 2w_3 + 3w_4 + 5w_5, \\
f(v_7) &= 2w_1 - 6w_3 + 2w_4 + w_5 - w_6
\end{align*}
\]

(a) Write the matrix that represents \(f \) relative to bases \(B_1 \) and \(B_2 \).
(b) Find the rank and nullity of \(f \). (You are encouraged to use Matlab to do this problem. If you use Matlab, please write down the Matlab commands and the outputs.)