Homework 6
Due 02/28/2020

In the following problems, make sure to write your arguments coherently in full sentences. Start a sentence with words rather than a formula. Use words to transition your ideas, for example “This leads to”, “Therefore”, “We want to show”, etc.

1. Let \(V \) be an inner product space and let \(\| \cdot \| \) be the norm associated with the inner product on \(V \), i.e. given by \(\|v\| = \sqrt{(v,v)} \). Show that
 (a) (Parallelogram identity)
 \[
 \|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2) \quad \forall u, v \in V.
 \]
 (b) (Cauchy-Schwarz inequality)
 \[
 |(u,v)| \leq \|u\|\|v\| \quad \forall u, v \in V.
 \]
 Note: for Part (b), you only need to show proof for the case \(F = \mathbb{R} \) or \(\mathbb{Q} \). Use the fact that \((tu + v, tu + v) \geq 0 \) for all \(t \in \mathbb{R} \). If you can do the case \(F = \mathbb{C} \), you will be granted 3 extra points.

2. On \(\mathbb{R}^n \), let us consider an operator \(\| \cdot \| \) given by \(\|x\| = |x_1| + |x_2| + \ldots + |x_n| \) where
 \[
 x = \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
 \end{bmatrix}
 \]
 Show that \(\| \cdot \| \) is a norm on \(\mathbb{R}^n \). (This is known as a “taxicab” norm.)

3. Let \(V \) be an inner product space. For each subset \(S \subset V \), the orthogonal complement of \(S \) is denoted by \(S^\perp = \{ v \in V : v \perp w \text{ for all } w \in S \} \). Let \(U \) be a subspace of \(V \). Show the following statements:
 (a) \(U^\perp \) is a subspace of \(V \).
 (b) \(U \oplus U^\perp = V \).
 (c) \((U^\perp)^\perp = U \).

4. Let \(V \) be an inner product space over \(\mathbb{C} \) with an orthonormal basis \(\mathcal{B} = \{ v_1, v_2, \ldots, v_n \} \). Let \(x = \sum_{k=1}^{n} \alpha_k v_k \) and \(y = \sum_{k=1}^{n} \beta_k v_k \) where \(\alpha_k, \beta_k \in \mathbb{C} \) for \(k = 1, 2, \ldots, n \). Show that
 \[
 (x,y) = \sum_{k=1}^{n} \alpha_k \overline{\beta_k}.
 \]

Do the following problem for 6 bonus points.

5. On \(P_n(\mathbb{R}) \), which is the space of polynomials of real coefficients with degree \(\leq n \), let us consider the inner product
 \[
 (f,g) = \int_{0}^{1} f(x)g(x)dx.
 \]
 Let \(p \) be the orthogonal projection of \(x^2 \) on the line span\{\(x \)\}. Determine \(\|x^2 - p\| \).