Last time, we defined invariant subspace of a vector space with respect to a linear map. Consider a linear map \(f : V \rightarrow V \). A subspace \(W \) of \(V \) is said to be invariant under \(f \) if \(f(W) \subseteq W \).

A special invariant subspace of \(V \) is known as the eigenspace. Let \(\lambda \in \mathbb{F} \), which is the base field of \(V \). The set

\[
E_\lambda = \{ v \in V : f(v) = \lambda v \}
\]

consists of all vectors in \(V \) that get scaled by a factor of \(\lambda \) when applying \(f \).

\(E_\lambda \) is:

- (a) a subspace of \(V \),
- (b) invariant under \(f \).

The proof of (a) follows from the standard procedure: to check if \(E_\lambda \) is a subspace of \(V \), knowing that it is already a subset of \(V \), we only need to check 3 properties:

1) \(0 \in E_\lambda \)
2) \(E_\lambda \) is closed under addition.
3) \(E_\lambda \) is closed under scaling

How to check 2)? Let \(v, w \in E_\lambda \). We want to show \(v+w \in E_\lambda \).

Because \(v, w \in V \), we have

\[
f(v) = \lambda v, \quad f(w) = \lambda w.
\]

To show that \(v+w \in E_\lambda \), we need to show \(f(v+w) = \lambda(v+w) \).

We have

\[
\text{LTS} = f(v) + f(w) \quad \text{(because } f \text{ is linear)}
= \lambda v + \lambda w \quad \text{(because } v, w \in E_\lambda) \\
= \lambda (v+w) \\
= \text{RHS}.
\]
Thus, we have proved 2) Why is 1) true? Notice that \(f(0) = 0 = \lambda 0 \).
Thus, \(0 \in E_\lambda \) Property 3) can be proven in the same manner as Property 2).

(b) How to show that \(E_\lambda \) is invariant under \(f \)?
Let \(v \in E_\lambda \). We show that \(f(v) \in E_\lambda \).

But \(w = f(v) \). To show that \(w \in E_\lambda \), we need to show \(f(w) = \lambda w \).
Because \(v \in E_\lambda \), we have \(f(v) = \lambda v \). In other words, \(w = \lambda v \).
We have
\[
 f(w) = f(\lambda v) = \lambda f(v) = \lambda w
\]
which is what we wanted to show. □

For most \(\lambda \), \(E_\lambda \) is equal to \([0,1] \), the trivial vector space. There are some very special values \(\lambda \) such that \(E_\lambda \neq [0,1] \). Those values are called eigenvalues of \(f \). If \(\lambda \) is an eigenvalue of \(f \) then \(E_\lambda \) is called eigenspace corresponding to \(\lambda \). A nonzero element of \(E_\lambda \) is called an eigenvector corresponding to \(\lambda \).

In other words, an eigenvector of \(f \) corresponding to \(\lambda \) is a vector that gets scaled by factor \(\lambda \) when applying \(f \).

An eigenvector of \(f \) is not rotated by \(f \), only scaled. In \(E_\lambda \), every vector is scaled by factor \(\lambda \).
The notion of eigenvalue and eigenvectors of a linear map is a generalization of the notion of eigenvalues and eigenvectors of a matrix, which we already learned in Linear Algebra I. The connection between them is as follows.

If \(A \in \mathbb{M}_{n \times n}(F) \) then the eigenvalues and eigenvectors of \(A \) are exactly the eigenvalues and eigenvectors of the linear map \(f: \mathbb{R}^n \to \mathbb{R}^n \) given by \(f(v) = Av \).

Why so? If \(\lambda \) is an eigenvalue of \(A \) then there is some \(v \neq 0 \) such that \((A - \lambda I_n)v = 0 \). This is equivalent to \(Av = \lambda v \) or simply \(Av = \lambda v \). Thus, \(f(v) = \lambda v \). This means \(v \in E_\lambda \) and \(v \neq 0 \). Then \(\lambda \) is an eigenvalue of \(f \). One can also show that the converse is true: an eigenvalue of \(f \) is also an eigenvalue of \(A \).

More generally, we have the following:

Let \(f: V \to V \) be a linear map. Let \(B \) be a basis of \(V \), and \(A = [f]_B \) be the matrix that represents \(f \) in basis \(B \). Then the eigenvalues of \(f \) are the same as the eigenvalues of \(A \) and vice versa.

How do we see this? Let \(\lambda \in F \) be an eigenvalue of \(f \). By the definition of eigenvalues, we have \(E_\lambda \neq \{0\} \). This means there is a nonzero vector \(v \in V \) such that

\[
[f(v)]_B = \lambda [v]_B.
\]

Let us take the coordinate of both sides in basis \(B \).

\[
[f(v)]_B = [\lambda v]_B.
\]

We know that

\[
\text{LHS} = [f(v)]_B = [f]_B [v]_B = A [v]_B,
\]

\[
\text{RHS} = [\lambda v]_B = \lambda [v]_B.
\]
Hence, we obtain an equation

$$A \mathbf{v}_g = \lambda \mathbf{v}_g.$$ \((\star)\)

Note that \(\mathbf{v}_g \neq 0\) because \(v \neq 0\). From \((\star)\), we realize that \(\mathbf{v}_g\) is an eigenvector of \(A\) and \(\lambda\) is the corresponding eigenvalue. We have showed that an eigenvalue of \(f\) is an eigenvalue of \(A\). The converse can be shown similarly: an eigenvalue of \(A\) is also an eigenvalue of \(f\).

We have found a connection between the eigenvalues of \(f\) and the eigenvalues of the matrix that represents \(f\): they are the same. How about the eigenspace \(E_1\) of \(f\) and the eigenspace \(E_A\) of \(A = [f]_g\)? What is the relation between them? We know that

\[
E_f = \{ v \in V : f(v) = \lambda v \},
\]
\[
E_A = \{ x \in \mathbb{R}^n : Ax = \lambda x \}. \quad \text{(Here } n = \dim V).\]

From \((\star)\), we have

\[
E_A = \{ \mathbf{v}_g : v \in E_f \}.
\]

In other words, \(E_A\) is the set of all the coordinates (in basis \(B\)) of the eigenvectors of \(f\).

This observation gives us a method to find the eigenvalues and eigenvectors of \(f\) by finding the eigenvalues and eigenvectors of the matrix \(A = [f]_g\). The procedure is as follows.

1. Given a function \(f : V \rightarrow V\), fix a basis \(B\) of \(V\) and find the matrix \([f]_B\). Call it \(A\).
2. Find the eigenvalue \(\lambda\)'s and the corresponding eigenspaces \(E_A\) of \(A\). We know how to do this in Linear Algebra I.
3. For each eigenvalue \(\lambda\), find a basis of \(E_A\).
4. Then convert this basis to a basis of \(E_A\).
Ex: Let \(f: M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}) \) be a linear map given by
\[
 f\left(\begin{array}{cc}
 a & b \\
 c & d
 \end{array}\right) = \begin{array}{cc}
 d & -b \\
 -c & a
 \end{array}.
\]
Find the eigenvalues and the corresponding eigenspaces of \(f \).

Fix a standard basis of \(M_{2 \times 2}(\mathbb{R}) \):
\[
 B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}
\]
\(E_1 \) \(E_2 \) \(E_3 \) \(E_4 \)

We have
\[
 f(E_1) = f\left(\begin{array}{cc}
 1 & 0 \\
 0 & 0
 \end{array}\right) = \begin{array}{cc}
 0 & 0 \\
 0 & 0
 \end{array} = E_4
\]
\[
 f(E_2) = f\left(\begin{array}{cc}
 0 & 1 \\
 0 & 0
 \end{array}\right) = \begin{array}{cc}
 0 & -1 \\
 0 & 0
 \end{array} = -E_2
\]
\[
 f(E_3) = f\left(\begin{array}{cc}
 0 & 0 \\
 1 & 0
 \end{array}\right) = \begin{array}{cc}
 0 & 0 \\
 -1 & 0
 \end{array} = -E_3
\]
\[
 f(E_4) = f\left(\begin{array}{cc}
 0 & 0 \\
 0 & 1
 \end{array}\right) = \begin{array}{cc}
 1 & 0 \\
 0 & 0
 \end{array} = E_1
\]

Thus, the matrix that represents \(f \) in basis \(B \) is
\[
 [f]_B = \begin{bmatrix}
 [f(E_1)]_B & [f(E_2)]_B & [f(E_3)]_B & [f(E_4)]_B
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 0 & 0 & 1 \\
 0 & -1 & 0 & 0 \\
 0 & 0 & -1 & 0 \\
 1 & 0 & 0 & 0
 \end{bmatrix}
\]
\(A \)

What are the eigenvalues of \(A \)?
\[\det(A - \lambda I_4) = \begin{vmatrix} -\lambda & 0 & 0 & 1 \\ 0 & -1 -\lambda & 0 & 0 \\ 0 & 0 & -1 -\lambda & 0 \\ 1 & 0 & 0 & -\lambda \end{vmatrix} \]

\[= \ldots \]

\[= (\lambda + 1)^3 (\lambda - 1). \]

One can use Matlab to compute the eigenvalues of \(A \) as follows:

\[\Rightarrow A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

\[\Rightarrow \text{eig}(A) \]

\(A \) has two eigenvalues: \(\lambda = \pm 1 \).

- Find eigenspace \(\widetilde{E}_1 \) (corresponding to \(\lambda = 1 \)):

 To find \(\widetilde{E}_1 \), we find all vectors \(x \in \mathbb{R}^4 \) that satisfy

 \[Ax = 1 \cdot x. \]

 This equation is equivalent to \((A - I_4)x = 0 \)

 We are finding the null space of matrix \(A - I_4 \).

 \[A - I_4 = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \]

 \[\xrightarrow{\text{RREF}} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

 \[x_1 \ x_2 \ x_3 \ x_4 \]

 We get \(x_1 = x_4 \), \(x_2 = x_3 = 0 \) Thus,

 \[\widetilde{E}_1 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_4, x_2 = x_3 = 0 \right\} \]

 \[= \left\{ (x_1, 0, 0, x_4) : x_1 \in \mathbb{R} \right\} \]

 \[= \text{span} \left\{ (1, 0, 0, 1) \right\}. \]

 Thus, \(\widetilde{E}_1 \) has basis \(\{ (1, 0, 0, 1) \} \).

 - Find eigenspace \(\widetilde{E}_-1 \) of \(A \):

 We get \(\widetilde{E}_{-1} = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = -x_4 \right\} \)

 \[= \left\{ (x_1, x_2, x_3, -x_4) : x_1, x_2, x_3 \in \mathbb{R} \right\} \]

 \[= \text{span} \left\{ (1, 0, 0, -1), (0, 1, 0, 0), (0, 0, 1, 0) \right\}. \]
One can use Matlab to assist the computation of the eigenvalues and eigenvectors of A as follows:

$$
\Rightarrow A = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
$$

$$
\Rightarrow [\mathbf{a}, \mathbf{b}] = \text{eig}(A)
$$

Matlab returns:

$$
\mathbf{a} = \begin{bmatrix}
0 & 0 & 0.7071 & 0.7071 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & -0.7071 & 0.7071
\end{bmatrix}
$$

$$
\mathbf{b} = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

Matrix \mathbf{b} is a diagonal matrix that contains the eigenvalues of A on the diagonal. Matrix \mathbf{a} consists of eigenvectors of A (aligned as columns) corresponding to the eigenvalues on \mathbf{b}. For example, the vector

$$
\mathbf{v}_1 = \begin{bmatrix}
0 \\
0 \\
1 \\
0
\end{bmatrix}
$$

which is the first column of \mathbf{a}, is an eigenvector of $\lambda = -1$.

Vectors

$$
\mathbf{v}_2 = \begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix}
\quad \text{and} \quad
\mathbf{v}_3 = \begin{bmatrix}
0.7071 \\
0 \\
0 \\
-0.7071
\end{bmatrix}
$$

are also eigenvectors of $\lambda = -1$. Why does the entries of \mathbf{v}_3 look so ugly? This is because Matlab tries to rescale eigenvector to be of magnitude 1. The magnitude of \mathbf{v}_3 is

$$
\sqrt{(0.7071)^2 + 0^2 + 0^2 + (-0.7071)^2} = 1
$$

One can replace \mathbf{v}_3 by

$$
\mathbf{v}_3' = \begin{bmatrix}
1 \\
0 \\
0 \\
-1
\end{bmatrix}
$$

which is a nicer scaling of \mathbf{v}_3'. Continue next time.